10,517 research outputs found

    SRB ascent aerodynamic heating design criteria reduction study, volume 1

    Get PDF
    An independent set of solid rocket booster (SRB) convective ascent design environments were produced which would serve as a check on the Rockwell IVBC-3 environments used to design the ascent phase of flight. In addition, support was provided for lowering the design environments such that Thermal Protection System (TPS), based on conservative estimates, could be removed leading to a reduction in SRB refurbishment time and cost. Ascent convective heating rates and loads were generated at locations in the SRB where lowering the thermal environment would impact the TPS design. The ascent thermal environments are documented along with the wind tunnel/flight test data base used as well as the trajectory and environment generation methodology. Methodology, as well as, environment summaries compared to the 1980 Design and Rockwell IVBC-3 Design Environment are presented in this volume, 1

    Wigner solids of wide quantum wells near Landau filling ν=1\nu=1

    Full text link
    Microwave spectroscopy within the Landau filling (ν\nu) range of the integer quantum Hall effect (IQHE) has revealed pinning mode resonances signifying Wigner solids (WSs) composed of quasi-particles or -holes. We study pinning modes of WSs in wide quantum wells (WQWs) for 0.8≤ν≤1.2 0.8\le\nu\le1.2, varying the density, nn, and tilting the sample by angle θ\theta in the magnetic field. Three distinct WS phases are accessed. One phase, S1, is phenomenologically the same as the WS observed in the IQHEs of narrow QWs. The second phase, S2, exists at ν\nu further from ν=1\nu=1 than S1, and requires a sufficiently large nn or θ\theta, implying S2 is stabilized by the Zeeman energy. The melting temperatures of S1 and S2, estimated from the disappearance of the pinning mode, show different behavior vs ν\nu. At the largest nn or θ\theta, S2 disappears and the third phase, S1A, replaces S1, also exhibiting a pinning mode. This occurs as the WQW ν=1\nu=1 IQHE becomes a two-component, Halperin-Laughlin \pone state. We interpret S1A as a WS of the excitations of \pone, which has not been previously observed

    Possible test of ancient dense Martian atmosphere

    Get PDF
    We have completed preliminary calculations of the minimum sizes of bolides that would penetrate various hypothetical Martian atmospheres with surface pressures ranging from 6 to 1000 mbar for projectiles of various strengths. The calculations are based on a computer program. These numbers are used to estimate the diameter corresponding to the turndown in the crater diameter distribution due to the loss of these bodies, analogous to the dramatic turndown at larger sized already discovered on Venus due to this effect. We conclude that for an atmosphere greater than a few hundred millibars, a unique downward displacement in the diameter distribution would develop in the crater diameter distribution at D approximately = 0.5-4 km, due to loss of all but Fe bolides. Careful search for this displacement globally, as outlined here, would allow us to place upper limits on the pressure of the atmosphere contemporaneous with the oldest surfaces, and possibly to get direct confirmation of dense ancient atmospheres
    • …
    corecore