218 research outputs found

    Spectral density of the Dirac operator in two-flavour QCD

    Full text link
    We compute the spectral density of the (Hermitean) Dirac operator in Quantum Chromodynamics with two light degenerate quarks near the origin. We use CLS/ALPHA lattices generated with two flavours of O(a)-improved Wilson fermions corresponding to pseudoscalar meson masses down to 190 MeV, and with spacings in the range 0.05-0.08 fm. Thanks to the coverage of parameter space, we can extrapolate our data to the chiral and continuum limits with confidence. The results show that the spectral density at the origin is non-zero because the low modes of the Dirac operator do condense as expected in the Banks-Casher mechanism. Within errors, the spectral density turns out to be a constant function up to eigenvalues of approximately 80 MeV. Its value agrees with the one extracted from the Gell-Mann-Oakes-Renner relation

    Chiral symmetry breaking in QCD Lite

    Full text link
    A distinctive feature of the presence of spontaneous chiral symmetry breaking in QCD is the condensation of low modes of the Dirac operator near the origin. The rate of condensation must be equal to the slope of (Mpi^2 Fpi^2)/2 with respect to the quark mass m in the chiral limit, where Mpi and Fpi are the mass and the decay constant of the Nambu-Goldstone bosons. We compute the spectral density of the (Hermitian) Dirac operator, the quark mass, the pseudoscalar meson mass and decay constant by numerical simulations of lattice QCD with two light degenerate Wilson quarks. We use CLS lattices at three values of the lattice spacing in the range 0.05-0.08 fm, and for several quark masses corresponding to pseudoscalar mesons masses down to 190 MeV. Thanks to this coverage of parameters space, we can extrapolate all quantities to the chiral and continuum limits with confidence. The results show that the low quark modes do condense in the continuum as expected by the Banks-Casher mechanism, and the rate of condensation agrees with the Gell-Mann-Oakes-Renner (GMOR) relation. For the renormalisation-group-invariant ratios we obtain [\Sigma^RGI]^(1/3)/F =2.77(2)(4) and Lambda^MSbar/F = 3.6(2), which correspond to [\Sigma^\MSbar(2 GeV)]^(1/3) =263(3)(4) MeV and F=85.8(7)(20) MeV if FK is used to set the scale by supplementing the theory with a quenched strange quark.Comment: 4 pages, 3 figures, 1 tabl

    Excited light and strange hadrons from the lattice with two Chirally Improved quarks

    Full text link
    Results for excited light and strange hadrons from the lattice with two flavors of Chirally Improved sea quarks are presented. We perform simulations at several values of the pion mass ranging from 250 to 600 MeV and extrapolate to the physical pion mass. The variational method is applied to extract excited energy levels but also to discuss the content of the states. Among others, we explore the flavor singlet/octet content of Lambda states. In general, our results agree well with experiment, in particular we confirm the Lambda(1405) and its dominant flavor singlet structure.Comment: Contribution to the XV International Conference on Hadron Spectroscopy "Hadron 2013", 4-8 November 2013, Nara, Japa

    Meson and baryon spectrum for QCD with two light dynamical quarks

    Full text link
    We present results of meson and baryon spectroscopy using the Chirally Improved Dirac operator on lattices of size 16**3 x 32 with two mass-degenerate light sea quarks. Three ensembles with pion masses of 322(5), 470(4) and 525(7) MeV and lattice spacings close to 0.15 fm are investigated. Results on ground and excited states for several channels are given, including spin two mesons and hadrons with strange valence quarks. The analysis of the states is done with the variational method, including two kinds of Gaussian sources and derivative sources. We obtain several ground states fairly precisely and find radial excitations in various channels. Excited baryon results seem to suffer from finite size effects, in particular at small pion masses. We discuss the possible appearance of scattering states in various channels, considering masses and eigenvectors. Partially quenched results in the scalar channel suggest the presence of a 2-particle state, however, in most channels we cannot identify them. Where available, we compare our results to results of quenched simulations using the same action.Comment: 27 pages, 29 figures, 11 table
    • …
    corecore