12 research outputs found

    American eel resilience to simulated fluid shear associated with passage through hydroelectric turbines

    Get PDF
    American eel (Anguilla rostrata) populations have declined within their native range along the eastern coast of North America due to factors such as commercial fishing, habitat alteration, and dams. American eel are catadromous fish species, and high mortality rates (>40%) have been observed for freshwater life-stage adult eel passing downstream through hydropower turbines. Lacerations and sectioning of fish have been observed downstream of turbines and these injuries are commonly associated with direct contact with the turbine runner, whether through blade strike or pinching and grinding. Exposure to fluid shear may also be a source of injury, however, little is known about American eel susceptibility to this physical stressor. Eels are considerably flexible when compared to other fish species and lack other morphological characteristics that would make them susceptible to fluid shear, such as protruding eyes, large scales, and large operculum. European eel, which have previously been tested for susceptibility to fluid shear, were found to be resilient. To determine if American eel are also resilient to fluid shear, forty American eel were exposed to a water jet, simulating severe fluid shear (strain rate > 800 s−1) that fish may experience when passing downstream through turbines. No immediate or delayed (48 h) signs of injury were observed after exposure to severe fluid shear. Based on this study, and a previous study conducted on American eel susceptibility to barotrauma, the source of injury and mortality of American eel passing through turbines is likely attributed to blade strike or pinching and grinding

    American eel state of buoyancy and barotrauma susceptibility associated with hydroturbine passage

    Get PDF
    American eel are likely to encounter and pass through hydropower turbines, particularly during the downstream spawning migration, where exposure to stressors can potentially lead to injuries and mortality. Previous research has recovered dead eels downstream of hydropower facilities and, for some fish, injuries were easily attributed to blade strike; however, others showed no external signs of injury suggesting that other stressors, such as rapid decompression may be a potential source of mortality. For this research, yellow– and silver-phase American eel were held and allowed to acclimate to 172 kPa (absolute pressure) in hyper/hypobaric hydro-chambers for about 1 d. After acclimation, the state of buoyancy was determined prior to exposure to a rapid decompression simulating pressures encountered during hydroturbine passage. Fish were then examined for signs of barotrauma. Eel did not attain a state of neutral buoyancy but rather maintained negative buoyancy suggesting that eels, and possibly other benthic species, likely maintain a state of negative buoyancy to facilitate occupancy on or near the substrate. Additionally, eel were found to be resilient to rapid decompression, displaying no instantaneous mortality and minimal injuries, suggesting that barotrauma is not likely a major concern for American eel passing downstream through hydroturbines

    American eel resilience to simulated fluid shear associated with passage through hydroelectric turbines

    No full text
    American eel (Anguilla rostrata) populations have declined within their native range along the eastern coast of North America due to factors such as commercial fishing, habitat alteration, and dams. American eel are catadromous fish species, and high mortality rates (>40%) have been observed for freshwater life-stage adult eel passing downstream through hydropower turbines. Lacerations and sectioning of fish have been observed downstream of turbines and these injuries are commonly associated with direct contact with the turbine runner, whether through blade strike or pinching and grinding. Exposure to fluid shear may also be a source of injury, however, little is known about American eel susceptibility to this physical stressor. Eels are considerably flexible when compared to other fish species and lack other morphological characteristics that would make them susceptible to fluid shear, such as protruding eyes, large scales, and large operculum. European eel, which have previously been tested for susceptibility to fluid shear, were found to be resilient. To determine if American eel are also resilient to fluid shear, forty American eel were exposed to a water jet, simulating severe fluid shear (strain rate > 800 s−1) that fish may experience when passing downstream through turbines. No immediate or delayed (48 h) signs of injury were observed after exposure to severe fluid shear. Based on this study, and a previous study conducted on American eel susceptibility to barotrauma, the source of injury and mortality of American eel passing through turbines is likely attributed to blade strike or pinching and grinding

    Distinct Preflowering Drought Tolerance Strategies of Sorghum bicolor Genotype RTx430 Revealed by Subcellular Protein Profiling

    No full text
    Drought is the largest stress affecting agricultural crops, resulting in substantial reductions in yield. Plant adaptation to water stress is a complex trait involving changes in hormone signaling, physiology, and morphology. Sorghum (Sorghum bicolor (L.) Moench) is a C4 cereal grass; it is an agricultural staple, and it is particularly drought-tolerant. To better understand drought adaptation strategies, we compared the cytosolic- and organelle-enriched protein profiles of leaves from two Sorghum bicolor genotypes, RTx430 and BTx642, with differing preflowering drought tolerances after 8 weeks of growth under water limitation in the field. In agreement with previous findings, we observed significant drought-induced changes in the abundance of multiple heat shock proteins and dehydrins in both genotypes. Interestingly, our data suggest a larger genotype-specific drought response in protein profiles of organelles, while cytosolic responses are largely similar between genotypes. Organelle-enriched proteins whose abundance significantly changed exclusively in the preflowering drought-tolerant genotype RTx430 upon drought stress suggest multiple mechanisms of drought tolerance. These include an RTx430-specific change in proteins associated with ABA metabolism and signal transduction, Rubisco activation, reactive oxygen species scavenging, flowering time regulation, and epicuticular wax production. We discuss the current understanding of these processes in relation to drought tolerance and their potential implications

    American eel state of buoyancy and barotrauma susceptibility associated with hydroturbine passage

    No full text
    American eel are likely to encounter and pass through hydropower turbines, particularly during the downstream spawning migration, where exposure to stressors can potentially lead to injuries and mortality. Previous research has recovered dead eels downstream of hydropower facilities and, for some fish, injuries were easily attributed to blade strike; however, others showed no external signs of injury suggesting that other stressors, such as rapid decompression may be a potential source of mortality. For this research, yellow– and silver-phase American eel were held and allowed to acclimate to 172 kPa (absolute pressure) in hyper/hypobaric hydro-chambers for about 1 d. After acclimation, the state of buoyancy was determined prior to exposure to a rapid decompression simulating pressures encountered during hydroturbine passage. Fish were then examined for signs of barotrauma. Eel did not attain a state of neutral buoyancy but rather maintained negative buoyancy suggesting that eels, and possibly other benthic species, likely maintain a state of negative buoyancy to facilitate occupancy on or near the substrate. Additionally, eel were found to be resilient to rapid decompression, displaying no instantaneous mortality and minimal injuries, suggesting that barotrauma is not likely a major concern for American eel passing downstream through hydroturbines

    The Susceptibility of Juvenile American Shad to Rapid Decompression and Fluid Shear Exposure Associated with Simulated Hydroturbine Passage

    No full text
    Throughout many areas of their native range, American shad (Alosa sapidissima) and other Alosine populations are in decline. Though several conditions have influenced these declines, hydropower facilities have had significant negative effects on American shad populations. Hydropower facilities expose ocean-migrating American shad to physical stressors during passage through hydropower facilities, including strike, rapid decompression, and fluid shear. In this laboratory-based study, juvenile American shad were exposed separately to rapid decompression and fluid shear to determine their susceptibility to these stressors and develop dose–response models. These dose–response relationships can help guide the development and/or operation of hydropower turbines and facilities to reduce the negative effects to American shad. Relative to other species, juvenile American shad have a high susceptibility to both rapid decompression and fluid shear. Reducing or preventing exposure to these stressors at hydropower facilities may be a potential method to assist in the effort to restore American shad populations

    Insights from a workplace SARS-CoV-2 specimen collection program, with genomes placed into global sequence phylogeny.

    No full text
    In 2020, the Department of Energy established the National Virtual Biotechnology Laboratory (NVBL) to address key challenges associated with COVID-19. As part of that effort, Pacific Northwest National Laboratory (PNNL) established a capability to collect and analyze specimens from employees who self-reported symptoms consistent with the disease. During the spring and fall of 2021, 688 specimens were screened for SARS-CoV-2, with 64 (9.3%) testing positive using reverse-transcriptase quantitative PCR (RT-qPCR). Of these, 36 samples were released for research. All 36 positive samples released for research were sequenced and genotyped. Here, the relationship between patient age and viral load as measured by Ct values was measured and determined to be only weakly significant. Consensus sequences for each sample were placed into a global phylogeny and transmission dynamics were investigated, revealing that the closest relative for many samples was from outside of Washington state, indicating mixing of viral pools within geographic regions

    Drought delays development of the sorghum root microbiome and enriches for monoderm bacteria.

    No full text
    Drought stress is a major obstacle to crop productivity, and the severity and frequency of drought are expected to increase in the coming century. Certain root-associated bacteria have been shown to mitigate the negative effects of drought stress on plant growth, and manipulation of the crop microbiome is an emerging strategy for overcoming drought stress in agricultural systems, yet the effect of drought on the development of the root microbiome is poorly understood. Through 16S rRNA amplicon and metatranscriptome sequencing, as well as root metabolomics, we demonstrate that drought delays the development of the early sorghum root microbiome and causes increased abundance and activity of monoderm bacteria, which lack an outer cell membrane and contain thick cell walls. Our data suggest that altered plant metabolism and increased activity of bacterial ATP-binding cassette (ABC) transporter genes are correlated with these shifts in community composition. Finally, inoculation experiments with monoderm isolates indicate that increased colonization of the root during drought can positively impact plant growth. Collectively, these results demonstrate the role that drought plays in restructuring the root microbiome and highlight the importance of temporal sampling when studying plant-associated microbiomes
    corecore