31 research outputs found

    Interfacing with Neural Activity via Femtosecond Laser Stimulation of Drug-Encapsulating Liposomal Nanostructures

    Get PDF
    External control over rapid and precise release of chemicals in the brain potentially provides a powerful interface with neural activity. Optical manipulation techniques, such as optogenetics and caged compounds, enable remote control of neural activity and behavior with fine spatiotemporal resolution. However, these methods are limited to chemicals that are naturally present in the brain or chemically suitable for caging. Here, we demonstrate the ability to interface with neural functioning via a wide range of neurochemicals released by stimulating loaded liposomal nanostructures with femtosecond lasers. Using a commercial two-photon microscope, we released inhibitory or excitatory neurochemicals to evoke subthreshold and suprathreshold changes in membrane potential in a live mouse brain slice. The responses were repeatable and could be controlled by adjusting laser stimulation characteristics. We also demonstrate the release of a wider range of chemicals—which previously were impossible to release by optogenetics or uncaging—including synthetic analogs of naturally occurring neurochemicals. In particular, we demonstrate the release of a synthetic receptor-specific agonist that exerts physiological effects on long-term synaptic plasticity. Further, we show that the loaded liposomal nanostructures remain functional for weeks in a live mouse. In conclusion, we demonstrate new techniques capable of interfacing with live neurons, and extendable to in vivo applications

    1-Tetra­decyl­pyridinium bromide monohydrate

    Get PDF
    In the title compound, C19H34N+·Br−·H2O, the dihedral angle between the trans-planar alkyl side chain and the pyridinium ring is 52.73 (7)°. In the crystal structure, O—H⋯Br, C—H⋯Br and C—H⋯O hydrogen bonds form a network, while the hydro­phobic alkyl chains inter­digitate, forming bilayers

    Mimicking subsecond neurotransmitter dynamics with femtosecond laser stimulated nanosystems

    Get PDF
    Existing nanoscale chemical delivery systems target diseased cells over long, sustained periods of time, typically through one-time, destructive triggering. Future directions lie in the development of fast and robust techniques capable of reproducing the pulsatile chemical activity of living organisms, thereby allowing us to mimic biofunctionality. Here, we demonstrate that by applying programmed femtosecond laser pulses to robust, nanoscale liposome structures containing dopamine, we achieve sub-second, controlled release of dopamine – a key neurotransmitter of the central nervous system – thereby replicating its release profile in the brain. The fast delivery system provides a powerful new interface with neural circuits and to the larger range of biological functions that operate on this short timescale

    Dynamic control of neurochemical release with ultrasonically-sensitive nanoshell-tethered liposomes

    Get PDF
    The unique surface plasmon resonance of hollow gold nanoshells can be used to achieve drug release from liposomes upon laser stimulation, and adapted to mimic the intricate dynamics of neurotransmission ex vivo in brain preparations. However, to induce a physiological response in vivo requires the degree of temporal precision afforded by laser stimulation, but with a greater depth of penetration through tissue. Here we report that the attachment of hollow gold nanoshells to the surface of robust liposomes results in a construct that is highly sensitive to ultrasonic stimulation. The resulting construct can be remotely triggered by low intensity, therapeutic ultrasound. To our knowledge, this is the first example of nanoparticle-liposome system that can be activated by both laser and acoustic stimulation. The system is capable of encapsulating the neurochemical dopamine, and repeatedly releasing small amounts on-demand in a circulating environment, allowing for precise spatiotemporal control over the release profile

    An On-Demand Drug Delivery System for Control of Epileptiform Seizures

    Get PDF
    Drug delivery systems have the potential to deliver high concentrations of drug to target areas on demand, while elsewhere and at other times encapsulating the drug, to limit unwanted actions. Here we show proof of concept in vivo and ex vivo tests of a novel drug delivery system based on hollow-gold nanoparticles tethered to liposomes (HGN-liposomes), which become transiently permeable when activated by optical or acoustic stimulation. We show that laser or ultrasound simulation of HGN-liposomes loaded with the GABAA receptor agonist, muscimol, triggers rapid and repeatable release in a sufficient concentration to inhibit neurons and suppress seizure activity. In particular, laser-stimulated release of muscimol from previously injected HGN-liposomes caused subsecond hyperpolarizations of the membrane potential of hippocampal pyramidal neurons, measured by whole cell intracellular recordings with patch electrodes. In hippocampal slices and hippocampal–entorhinal cortical wedges, seizure activity was immediately suppressed by muscimol release from HGN-liposomes triggered by laser or ultrasound pulses. After intravenous injection of HGN-liposomes in whole anesthetized rats, ultrasound stimulation applied to the brain through the dura attenuated the seizure activity induced by pentylenetetrazol. Ultrasound alone, or HGN-liposomes without ultrasound stimulation, had no effect. Intracerebrally-injected HGN-liposomes containing kainic acid retained their contents for at least one week, without damage to surrounding tissue. Thus, we demonstrate the feasibility of precise temporal control over exposure of neurons to the drug, potentially enabling therapeutic effects without continuous exposure. For future application, studies on the pharmacokinetics, pharmacodynamics, and toxicity of HGN-liposomes and their constituents, together with improved methods of targeting, are needed, to determine the utility and safety of the technology in humans

    The Early Clinical Features of Dengue in Adults: Challenges for Early Clinical Diagnosis

    Get PDF
    Dengue infection in adults has become increasingly common throughout the world. As most of the clinical features of dengue have been described in children, we undertook a prospective study to determine the early symptoms and signs of dengue in adults. We show here that, overall, dengue cases presented with high rates of symptoms listed in the WHO 1997 or 2009 classification schemes for probable dengue fever thus resulting in high sensitivities of these schemes when applied for early diagnosis. However, symptoms such as myalgia, arthralgia, retro-orbital pain and mucosal bleeding were less frequently reported in older adults. This trend resulted in reduced sensitivity of the WHO classification schemes in older adults even though they showed increased risks of hospitalization and severe dengue. Instead, we suggest that older adults who present with fever and leukopenia should be tested for dengue, even in the absence of other symptoms. This could be useful for early clinical diagnosis in older adults so that they can be monitored and treated for severe dengue, which is especially important when an antiviral drug becomes available

    Regioselective modification of amino acid derivatives / Tan Eng Wui

    No full text
    Bibliography: leaves 187-202204 leaves ; 30 cm.Thesis (Ph.D.) -- University of Adelaide, Dept. of Organic Chemistry, 199

    Synthesis and in Vitro

    No full text

    Selective Bromination of α-Chloro and α-Bromo Carboxylic Acid Derivatives

    No full text
    corecore