416 research outputs found

    Plasma-type gelsolin in subarachnoid hemorrhage: novel biomarker today, therapeutic target tomorrow?

    Get PDF
    There is growing interest in the potential neuroprotective properties of gelsolin. In particular, plasma-type gelsolin (pGSN) can ameliorate deleterious inflammatory response by scavenging pro-inflammatory signals such as actin and lipopolysaccharide. In a recent issue of Critical Care, Pan and colleagues report an important association between pGSN and subarachnoid hemorrhage (SAH) disease severity, and found pGSN to be a novel and promising biomarker for SAH clinical outcome. Previous research shows pGSN may be actively degraded by neurovascular proteases such as matrix metalloproteinases in the cerebral spinal fluid of SAH patients. Taken together, these results suggest that pGSN is not only a novel marker of SAH clinical outcome, but may also play an active mechanistic role in SAH, and potentially serve as a future therapeutic target

    Mechanisms of oligodendrocyte regeneration from ventricular-subventricular zone-derived progenitor cells in white matter diseases

    Get PDF
    White matter dysfunction is an important part of many CNS disorders including multiple sclerosis (MS) and vascular dementia. Within injured areas, myelin loss and oligodendrocyte death may trigger endogenous attempts at regeneration. However, during disease progression, remyelination failure may eventually occur due to impaired survival/proliferation, migration/recruitment, and differentiation of oligodendrocyte precursor cells (OPCs). The ventricular-subventricular zone (V-SVZ) and the subgranular zone (SGZ) are the main sources of neural stem/progenitor cells (NSPCs), which can give rise to neurons as well as OPCs. Under normal conditions in the adult brain, the V-SVZ progenitors generate a large number of neurons with a small number of oligodendrocyte lineage cells. However, after demyelination, the fate of V-SVZ-derived progenitor cells shifts from neurons to OPCs, and these newly generated OPCs migrate to the demyelinating lesions to ease white matter damage. In this mini-review, we will summarize the recent studies on extrinsic (e.g., vasculature, extracellular matrix (ECM), cerebrospinal fluid (CSF)) and intrinsic (e.g., transcription factors, epigenetic modifiers) factors, which mediate oligodendrocyte generation from the V-SVZ progenitor cells. A deeper understanding of the mechanisms that regulate the fate of V-SVZ progenitor cells may lead to new therapeutic approaches for ameliorating white matter dysfunction and damage in CNS disorders

    Combination therapy with normobaric oxygen (NBO) plus thrombolysis in experimental ischemic stroke

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The widespread use of tissue plasminogen activator (tPA), the only FDA-approved acute stroke treatment, remains limited by its narrow therapeutic time window and related risks of brain hemorrhage. Normobaric oxygen therapy (NBO) may be a useful physiological strategy that slows down the process of cerebral infarction, thus potentially allowing for delayed or more effective thrombolysis. In this study we investigated the effects of NBO started simultaneously with intravenous tPA, in spontaneously hypertensive rats subjected to embolic middle cerebral artery (MCA) stroke. After homologous clot injection, animals were randomized into different treatment groups: saline injected at 1 hour; tPA at 1 hour; saline at 1 hour plus NBO; tPA at 1 hour plus NBO. NBO was maintained for 3 hours. Infarct volume, brain swelling and hemorrhagic transformation were quantified at 24 hours. Outcome assessments were blinded to therapy.</p> <p>Results</p> <p>Upon clot injection, cerebral perfusion in the MCA territory dropped below 20% of pre-ischemic baselines. Both tPA-treated groups showed effective thrombolysis (perfusion restored to nearly 100%) and smaller infarct volumes (379 ± 57 mm<sup>3 </sup>saline controls; 309 ± 58 mm<sup>3 </sup>NBO; 201 ± 78 mm<sup>3 </sup>tPA; 138 ± 30 mm<sup>3 </sup>tPA plus NBO), showing that tPA-induced reperfusion salvages ischemic tissue and that NBO does not significantly alter this neuroprotective effect. NBO had no significant effect on hemorrhagic conversion, brain swelling, or mortality.</p> <p>Conclusion</p> <p>NBO can be safely co-administered with tPA. The efficacy of tPA thrombolysis is not affected and there is no induction of brain hemorrhage or edema. These experimental results require clinical confirmation.</p

    Intravenous tPA therapy does not worsen acute intracerebral hemorrhage in mice

    Get PDF
    Tissue plasminogen activator (tPA) is the only FDA-approved treatment for reperfusing ischemic strokes. But widespread use of tPA is still limited by fears of inadvertently administering tPA in patients with intracerebral hemorrhage (ICH). Surprisingly, however, the assumption that tPA will worsen ICH has never been biologically tested. Here, we assessed the effects of tPA in two models of ICH. In a mouse model of collagenase-induced ICH, hemorrhage volumes and neurological deficits after 24 hrs were similar in saline controls and tPA-treated mice, whereas heparin-treated mice had 3-fold larger hematomas. In a model of laser-induced vessel rupture, tPA also did not worsen hemorrhage volumes, while heparin did. tPA is known to worsen neurovascular injury by amplifying matrix metalloproteinases during cerebral ischemia. In contrast, tPA did not upregulate matrix metalloproteinases in our mouse ICH models. In summary, our experimental data do not support the assumption that intravenous tPA has a deleterious effect in acute ICH. However, due to potential species differences and the inability of models to fully capture the dynamics of human ICH, caution is warranted when considering the implications of these findings for human therapy
    corecore