3 research outputs found

    Actinobacterial Diversity in Volcanic Caves and Associated Geomicrobiological Interactions

    Get PDF
    16 páginas.-- 8 figuras.-- 2 tablas.-- 66 referencias.-- Material suplementario http://dx.doi.org/10.3389/fmicb.2015.01342Volcanic caves are filled with colorful microbial mats on the walls and ceilings. These volcanic caves are found worldwide, and studies are finding vast bacteria diversity within these caves. One group of bacteria that can be abundant in volcanic caves, as well as other caves, is Actinobacteria. As Actinobacteria are valued for their ability to produce a variety of secondary metabolites, rare and novel Actinobacteria are being sought in underexplored environments. The abundance of novel Actinobacteria in volcanic caves makes this environment an excellent location to study these bacteria. Scanning electron microscopy (SEM) from several volcanic caves worldwide revealed diversity in the morphologies present. Spores, coccoid, and filamentous cells, many with hair-like or knobby extensions, were some of the microbial structures observed within the microbial mat samples. In addition, the SEM study pointed out that these features figure prominently in both constructive and destructive mineral processes. To further investigate this diversity, we conducted both Sanger sequencing and 454 pyrosequencing of the Actinobacteria in volcanic caves from four locations, two islands in the Azores, Portugal, and Hawai'i and New Mexico, USA. This comparison represents one of the largest sequencing efforts of Actinobacteria in volcanic caves to date. The diversity was shown to be dominated by Actinomycetales, but also included several newly described orders, such as Euzebyales, and Gaiellales. Sixty-two percent of the clones from the four locations shared less than 97% similarity to known sequences, and nearly 71% of the clones were singletons, supporting the commonly held belief that volcanic caves are an untapped resource for novel and rare Actinobacteria. The amplicon libraries depicted a wider view of the microbial diversity in Azorean volcanic caves revealing three additional orders, Rubrobacterales, Solirubrobacterales, and Coriobacteriales. Studies of microbial ecology in volcanic caves are still very limited. To rectify this deficiency, the results from our study help fill in the gaps in our knowledge of actinobacterial diversity and their potential roles in the volcanic cave ecosystems.The authors acknowledge the Spanish Ministry of Economy and Competitiveness (project CGL2013-41674-P) and FEDER Funds for financial support. AM acknowledges the support from the Marie Curie Intra-European Fellowship of the European Commission's 7th Framework Programme (PIEF-GA-2012-328689). CR was funded by the Regional Fund for Science and Technology and Pro-Emprego program of the Regional Government of the Azores, Portugal [M3.1.7/F/013/2011, M3.1.7/F/030/2011]. Her work was partly supported by National funds from the Foundation for Science and Technology of the Portuguese Government, [Understanding Underground Biodiversity: Studies in Azorean Lava Tubes (reference PTDC/AMB/70801/2006]. The authors would like to thank the TRU Innovation in Research Grant, TRU UREAP Fund, Western Economic Diversification Canada Fund, Kent Watson (assisted with the Helmcken Falls Cave sample collection), Derrick Horne (UBC BioImaging Facility for the SEM work). We acknowledged the Canadian Ministry of Forests, Lands, and Natural Resource Operations for Park Use Permit#102172. This work was also supported by the Cave Conservancy of the Virginias, the Graduate Research Allocation Committee at UNM Biology, UNM Biology Grove Scholarship, the Student Research Allocation Committee at UNM, the National Speleological Society, the New Mexico Space Grant Consortium, the New Mexico Alliance for Minority Participation Program, the New Mexico Geological Society, and Kenneth Ingham Consulting. We acknowledge support from the UNM Molecular Biology Facility, which is supported by NIH grant number P20GM103452. The authors also wish to thank Fernando Pereira, Ana Rita Varela, Pedro Correia, Berta Borges, and Guida Pires for help during field and lab work in the Azores. The authors gratefully acknowledge the photographic contributions of Kenneth Ingham and Pedro Cardoso and Michael Spilde (SEM images). The authors would like to thank Dr. Steven Van Wagoner (TRU) and Drs. Julian Davies and Vivian Miao (UBC) for their invaluable comments in manuscript preparation. We gratefully acknowledge the help and collecting permits granted by the staff of El Malpais National Monument and Hawai'i Volcanoes National Park (USA).Peer reviewe

    Cavidades vulcanicas e ecossistemas subterraneos dos Acores: patrimonio natural a proteger

    No full text
    Artículo en Revista de DivulgaciónArtículo donde se incluyen posters y comentarios de una exposición sobre algunas grutas volcánicas de la Isla de Terceira (Azores, Portugal)N

    Biotechnological potential of Actinobacteria from Canadian and Azorean volcanic caves

    No full text
    Caves are regarded as extreme habitats with appropriate conditions for the development of Actinobacteria. In comparison with other habitats, caves have not yet been the target of intensive screening for bioactive secondary metabolites produced by actinomycetes. As a primary screening strategy, we conducted a metagenomic analysis of the diversity and richness of a key gene required for non-ribosomal peptide (NRP) biosynthesis, focusing on cave-derived sediments from two Canadian caves (a lava tube and a limestone cave) to help us predict whether different types of caves may harbor drug-producing actinobacteria. Using degenerate PCR primers targeting adenylation domains (AD), a conserved domain in the core gene in NRP biosynthesis, a number of amplicons were obtained that mapped back to biomedically relevant NRP gene cluster families. This result guided our culture-dependent sampling strategy of actinomycete isolation from the volcanic caves of Canada (British Columbia) and Portugal (Azores) and subsequent characterization of their antibacterial and enzymatic activities. Multiple enzymatic and antimicrobial activities were identified from bacterial of the Arthrobacter and Streptomyces genera demonstrating that actinomycetes from volcanic caves are promising sources of antibacterial, antibiofilm compounds and industrially relevant enzymes. 15 páginas.-- 4 figuras.-- 3 tablas.-- referencias.-- The online version of this article (doi:10.1007/s00253-016-7932-7) contains supplementary material, which is available to authorized users.C. Riquelme was funded by the Regional Fund for Science and Technology and Pro-Emprego program of the Regional Government of the Azores, Portugal [M3.1.7/F/013/2011, M3.1.7/F/030/2011]. Her work was partly supported by National funds from the Foundation for Science and Technology of the Portuguese Government [Understanding Underground Biodiversity: Studies in Azorean Lava Tubes (reference TDC/AMB/70801/2006)]. A.Z. Miller acknowledges the support from the Marie Curie Intra-European Fellowship of the European Commission’s 7th Framework Programme (PIEF-GA-2012-328689). The authors would like to thank the TRU Innovation in Research Grant, TRU Undergraduate Research Enhancement (UREAP) Fund, Western Economic Diversification Canada Fund, Kent Watson (assisted with the Helmcken Falls Cave sample collection), Dr. Mario Jacques (U of Montreal for his assistance in biofilm culture), icholaus Vieira, Christian Stenner, and the Raspberry Rising Expedition team.We acknowledged the Canadian Ministry of Forests, Lands, and Natural Resource Operations for Park Use Permit#102172. The work done in the Brady lab was funded by NIH grant GM077516. Z. Charlop-Powers was also supported by NIH grant AI110029. The authors also wish to thank Fernando Pereira, Ana Rita Varela, Pedro Correia, Berta Borges, and Guida Pires for help during field and lab work in the Azores. The authors would like to thank Dr. Steven VanWagoner (TRU) and Drs. Julian Davies and Vivian Miao (UBC) for their invaluable comments in manuscript preparation. 15 páginas.-- figuras.-- Electronic supplementary material The online version of this article (doi:10.1007/s00253-016-7932-7) contains supplementary material, which is available to authorized users.Peer Reviewe
    corecore