3,984 research outputs found
www.eia.gov
The Energy Information Administration (EIA) produces projections of energy supply and demand each year in the Annual Energy Outlook (AEO). The projections in the AEO are not statements of what will happen but of what might happen, given the assumptions and methodologies. The Reference case projection assumes trends that are consistent with historical and current market behavior, technological and demographic changes, and current laws and regulations. The potential impacts of pending or proposed legislation, regulations, and standards—or of sections of legislation that have been enacted but that require implementing regulations or appropriation of funds that are not provided or specified in the legislation itself—are not reflected in the projections [1]. Thus, the AEO Reference case provides an impartial baseline that can be used to analyze potential new policies or legislative initiatives. Th
UK Large-scale Wind Power Programme from 1970 to 1990: the Carmarthen Bay experiments and the Musgrove Vertical-Axis Turbines
This article describes the development of the Musgrove Vertical Axis Wind Turbine (VAWT)
concept, the UK ‘Carmarthen Bay’ wind turbine test programme, and UK government’s wind
power programme to 1990. One of the most significant developments in the story of British
wind power occurred during the 1970s, 1980s, and 1990s, with the development of the
Musgrove vertical axis wind turbine and its inclusion within the UK Government’s wind
turbine test programme. Evolving from a supervisor’s idea for an undergraduate project at
Reading University, the Musgrove VAWT was once seen as an able competitor to the
horizontal axis wind systems that were also being encouraged at the time by both the UK
government and the Central Electricity Generating Board, the then nationalised electricity
utility for England and Wales. During the 1980s and 1990s the most developed Musgrove
VAWT system, along with three other commercial turbine designs was tested at
Carmarthen Bay, South Wales as part of a national wind power test programme. From these
developmental tests, operational data was collected and lessons learnt, which were
incorporated into subsequent wind power operations.http://dx.doi.org/10.1260/03095240677860621
Architecture of a Silicon Strip Beam Position Monitor
A collaboration between Fermilab and the Institute for High Energy Physics
(IHEP), Beijing, has developed a beam position monitor for the IHEP test beam
facility. This telescope is based on 5 stations of silicon strip detectors
having a pitch of 60 microns. The total active area of each layer of the
detector is about 12x10 cm2. Readout of the strips is provided through the use
of VA1` ASICs mounted on custom hybrid printed circuit boards and interfaced to
Adapter Cards via copper-over-kapton flexible circuits. The Adapter Cards
amplify and level-shift the signal for input to the Fermilab CAPTAN data
acquisition nodes for data readout and channel configuration. These nodes
deliver readout and temperature data from triggered events to an analysis
computer over gigabit Ethernet links.Comment: Submitted to TWEPP 201
Fringing Analysis and Simulation for the Vera C. Rubin Observatory's Legacy Survey of Space and Time
The presence of fringing in astronomical CCD images will impact photometric
quality and measurements. Yet its impact on the Vera C. Rubin Observatory's
Legacy Survey of Space and Time (LSST) has not been fully studied. We present a
detailed study on fringing for Charge-Coupled Devices (CCDs) already
implemented on the Rubin Observatory LSST Camera's focal plane. After making
physical measurements and knowing the compositions, we have developed a model
for the e2v CCDs. We present a method to fit for the internal height variation
of the epoxy layer within the sensors based on fringing measurements in a
laboratory setting. This method is generic enough that it can be easily
modified to work for other CCDs. Using the derived fringing model, we
successfully reproduce comparable fringing amplitudes that match the observed
levels in images taken by existing telescopes with different optical designs.
This model is then used to forecast the expected level of fringing in a single
LSST y-band sky background exposure with Rubin telescope optics in the presence
of a realistic time varying sky spectrum. The predicted fringing amplitude in
LSST images ranges from to depending on the location of a CCD
on the focal plane. We find that the predicted variation in surface brightness
caused by fringing in LSST y-band skybackground images is about $0.6\
\mu\rm{Jy}\ \rm{arcsec}^{-2}$, which is 40 times larger than the current
measurement error. We conclude that it is necessary to include fringing
correction in the Rubin's LSST image processing pipeline.Comment: 17 pages, 16 figures, submitted to PAS
Gravitational waves, black holes and cosmic strings in cylindrical symmetry
Gravitational waves in cylindrically symmetric Einstein gravity are described
by an effective energy tensor with the same form as that of a massless Klein-
Gordon field, in terms of a gravitational potential generalizing the Newtonian
potential. Energy-momentum vectors for the gravitational waves and matter are
defined with respect to a canonical flow of time. The combined energy-momentum
is covariantly conserved, the corresponding charge being the modified Thorne
energy. Energy conservation is formulated as the first law expressing the
gradient of the energy as work and energy-supply terms, including the energy
flux of the gravitational waves. Projecting this equation along a trapping
horizon yields a first law of black-hole dynamics containing the expected term
involving area and surface gravity, where the dynamic surface gravity is
defined with respect to the canonical flow of time. A first law for dynamic
cosmic strings also follows. The Einstein equation is written as three wave
equations plus the first law, each with sources determined by the combined
energy tensor of the matter and gravitational waves.Comment: 10 pages, revtex. Published version with further detail
Recommended from our members
Irradiation-Assisted Stress Corrosion Cracking Behavior of Austenitic Stainless Steels Applicable to LWR Core Internals.
This report summarizes work performed at Argonne National Laboratory on irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels that were irradiated in the Halden reactor in simulation of irradiation-induced degradation of boiling water reactor (BWR) core internal components. Slow-strain-rate tensile tests in BWR-like oxidizing water were conducted on 27 austenitic stainless steel alloys that were irradiated at 288 C in helium to 0.4, 1.3, and 3.0 dpa. Fractographic analysis was conducted to determine the fracture surface morphology. Microchemical analysis by Auger electron spectroscopy was performed on BWR neutron absorber tubes to characterize grain-boundary segregation of important elements under BWR conditions. At 0.4 and 1.4 dpa, transgranular fracture was mixed with intergranular fracture. At 3 dpa, transgranular cracking was negligible, and fracture surface was either dominantly intergranular, as in field-cracked core internals, or dominantly ductile or mixed. This behavior indicates that percent intergranular stress corrosion cracking determined at {approx}3 dpa is a good measure of IASCC susceptibility. At {approx}1.4 dpa, a beneficial effect of a high concentration of Si (0.8-1.5 wt.%) was observed. At {approx}3 dpa, however, such effect was obscured by a deleterious effect of S. Excellent resistance to IASCC was observed up to {approx}3 dpa for eight heats of Types 304, 316, and 348 steel that contain very low concentrations of S. Susceptibility of Types 304 and 316 steels that contain >0.003 wt.% S increased drastically. This indicates that a sulfur related critical phenomenon plays an important role in IASCC. A sulfur content of <0.002 wt.% is the primary material factor necessary to ensure good resistance to IASCC. However, for Types 304L and 316L steel and their high-purity counterparts, a sulfur content of <0.002 wt.% alone is not a sufficient condition to ensure good resistance to IASCC. This is in distinct contrast to the behavior of their high-C counterparts. At S concentrations >0.002 wt.%, the deleterious effect of S is so dominant that a high concentration of C is not an important factor. A two-dimensional map was developed in which susceptibility or resistance to IASCC is shown as a function of bulk concentrations of S and C. Data reported in the literature are consistent with the map. The map is helpful to predict relative IASCC susceptibility of Types 304 and 316 steels. A similar but somewhat different map is helpful to predict IASCC behavior of Type 348 steels. Grain-boundary segregation of S was observed for BWR neutron absorber tubes irradiated to {approx}3 dpa. On the basis of the results of the stress-corrosion-cracking tests and the microstructural characterization, a mechanistic IASCC model has been developed
Recommended from our members
Effects of Alloy Chemistry, Cold Work, and Water Chemistry on Corrosion Fatigue and Stress Corrosion Cracking of Nickel Alloys and Welds.
Reactor vessel internal components made of nickel-base alloys are susceptible to environmentally assisted cracking (EAC). A better understanding of the causes and mechanisms of this cracking may permit less conservative estimates of damage accumulation and requirements on inspection intervals. The objective of this work is to evaluate and compare the resistance of Alloys 600 and 690 and their welds, such as Alloys 82, 182, 52, and 152, to EAC in simulated light water reactor environments. The existing crack growth rate (CGR) data for these alloys under cyclic and constant loads have been evaluated to establish the effects of alloy chemistry, cold work, and water chemistry. The experimental fatigue CGRs are compared with CGRs that would be expected in air under the same mechanical loading conditions to obtain a qualitative understanding of the degree and range of conditions for significant environmental enhancement in growth rates. The existing stress corrosion cracking (SCC) data on Alloys 600 and 690 and Alloy 82, 182, and 52 welds have been compiled and analyzed to determine the influence of key parameters on growth rates in simulated PWR and BWR environments. The SCC data for these alloys have been evaluated with correlations developed by Scott and by Ford and Andresen
Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.
This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments
- …