28 research outputs found

    Geotechnical aspects of alluvial soils at different depths under sodium chloride action in Najran region, Saudi Arabia: Field supported by laboratory tests

    Get PDF
    The current research study is aimed at studying the impact of sodium chloride on the performance of semi-arid soils in the Najran area of Saudi Arabia. Experimental work has been undertaken to investigate how adding salt to the semi-arid soil collected in the Najran area affects the boundaries of Atterberg, compaction characteristics, California bearing ratio, and shear strength. All testing was conducted on soil samples from different zones of the Najran area at varying depths of 1.5, 3, and 4.5 m along the soil profiles. The soil samples were analyzed individually and then compared with the same soil samples mixed with NaCl at different percentages of 5, 10, and 20% by weight of the dry soil. Using advanced techniques, such as the scanning electron microscope, energy dispersive x-ray analysis, and X-ray diffraction analysis, the stabilization process was examined. The findings revealed that NaCl significantly impacts the geotechnical characteristics of semi-arid soils. The maximum dry density increased from 1.995, 1.93, and 1.96 to 2.02, 1.99, and 2.03 g/cm3, and the optimal water content decreased from 9.47, 13.7, and 11.29 to 7.01, 9.58%, and 8.09% with 20% NaCl added at various depths, respectively. Shear resistance parameters were improved by adding 20% NaCl, where the soil cohesion increased from 0.1333, 0.0872, and 0.0533 to 0.1843, 0.1034, and 0.0372 kg/cm2, and the angle of internal friction increased from 24°, 25.5°, and 29° to 27.8°, 30°, and 33°, respectively. The liquid and plastic limits and, in turn, the plasticity index reduced as the added percentage of NaCl increased. Furthermore, the California bearing ratio percentages significantly increased and reached more than 50%. As a result, it is established that NaCl is an excellent stabilizer, especially at 20% concentration, and might be used as a sub-base substance in highway construction

    Utilization of artificial intelligence approach for prediction of DLP values for abdominal CT scans: A high accuracy estimation for risk assessment

    Get PDF
    PurposeThis study aimed to evaluate Artificial Neural Network (ANN) modeling to estimate the significant dose length product (DLP) value during the abdominal CT examinations for quality assurance in a retrospective, cross-sectional study.MethodsThe structure of the ANN model was designed considering various input parameters, namely patient weight, patient size, body mass index, mean CTDI volume, scanning length, kVp, mAs, exposure time per rotation, and pitch factor. The aforementioned examination details of 551 abdominal CT scans were used as retrospective data. Different types of learning algorithms such as Levenberg-Marquardt, Bayesian and Scaled-Conjugate Gradient were checked in terms of the accuracy of the training data.ResultsThe R-value representing the correlation coefficient for the real system and system output is given as 0.925, 0.785, and 0.854 for the Levenberg-Marquardt, Bayesian, and Scaled-Conjugate Gradient algorithms, respectively. The findings showed that the Levenberg-Marquardt algorithm comprehensively detects DLP values for abdominal CT examinations. It can be a helpful approach to simplify CT quality assurance.ConclusionIt can be concluded that outcomes of this novel artificial intelligence method can be used for high accuracy DLP estimations before the abdominal CT examinations, where the radiation-related risk factors are high or risk evaluation of multiple CT scans is needed for patients in terms of ALARA. Likewise, it can be concluded that artificial learning methods are powerful tools and can be used for different types of radiation-related risk assessments for quality assurance in diagnostic radiology

    Notable changes in geochemical and mineralogical characteristics of different phases of episyenitization: insights on the radioactive and shielding of the late phase

    Get PDF
    Kab Amiri granites are submitted to post-magmatic hydrothermal solutions through fracture and faults, causing several alteration processes. The most common processes are episyenitization, saussuritization, hematitization, sericitization, kaolinization, albitization, chloritization, silicification, and muscovitization. Kab Amiri granites are vuggy, with the vugs partially to completely refilled with new constituents. The least episyenitized granites have elevated amounts of Fe, P, Zr, Ni, U, Th, Ba, Y, Hf, Nb, and As, which are correlated with their mobilization from biotite, k-feldspar, plagioclase and metamict zircon. These elemental changes are related the partial albitization, muscovitization, desilicification and chloritizatiom, which lead to the mobilization of these elements and forming of specific mineral association in the least altered granites such as autonite, tripiolite, columbite, Zircon and galena. On the second stage, granites were subjected to intense alteration processes by mineralizing fluids, causing wholly muscovitization of biotite and feldspar, albitization of plagioclase, carbonitization and apatitization. Many elements were mobilized from these altered minerals, including Ti, Al, Mn, Mg, Ca, Na, K, Mo, Cu, Pb, Zn, Ag, Co, Sr, V, Cr, Sn, Rb, Ta, Li, Sc, W, S, In, and Tl, leading to definite mineralization as kaslite, monazite, xenotime, polycrase and apatite. The mineralizing fluids in the least and highly episyenitized granites are incorporated in some ore minerals like uranophane, fergusonite, bazzite and garnet. Notably, the presence of elements such as U, Th, and other heavy metals in Kab Amiri granites highlights the potential for these rocks in radiation shielding applications. The unique combination of elements and minerals resulting from the alteration processes can be leveraged for developing new materials or enhancing existing materials used in radiation shielding

    Hormonal and inflammatory modulatory effects of hesperidin in hyperthyroidism-modeled rats

    Get PDF
    The goal of the current study was to investigate the hormonal modulatory efficiency of hesperidin, through its regulatory potential of immunological, inflammatory, and/or antioxidant changes in on hyperthyroidism modeled adult female albino rats. Both normal and hyperthyroidism modeled rats (140-160g) were randomly divided into four groups (10 animals each) as follows: 1) healthy animals were daily ingested with saline for six weeks, and served as control group, 2) healthy animals were intraperitoneally injected with hesperidin (50 mg/kg/day) for a similar period, 3) hyperthyroidism-modeled animals without any treatment acted as positive control, and 4) hyperthyroidism-modeled animals were treated intraperitoneally with hesperidin for a similar period. The findings showed that hesperidin significantly modulated hyperthyroidism deteriorations, this was evidenced by a remarkable decline in serum T4, FT4, T3, FT3, TNF-α, IL1β-, IL4-, IL-6, and IL-10 levels, with a minor increase in TSH and significant raise in CD4+ level. Similarly, valuable improvement was observed in the oxidative status; serum SOD, GPx, CAT, and GSH levels were dramatically enhanced, associated with remarkable drop in MDA and NO levels. Also, hesperidin demonstrated nephro-hepatoprotective and anti-atherogenic potential, this was achieved from the notable reduction in ALAT and ASAT activities as well as urea, creatinine, cholesterol, and triglyceride close to the corresponding values of healthy group. These findings were supported by histological and immunohistochemical ones that showed a notable decrease in the expression of the calcitonin antibody. In conclusion, hesperidin possesses anti-hyperthyroidism, immunoinflammatory regulatory, and antioxidant activities that evidenced from the improvement of physio-architecture of the thyroid gland, reduction of inflammation and restoration of the impaired oxidative stress. This effect might be mechanized through immunological, inflammatory, apoptotic, and/or antioxidant modulatory pathways

    Modelling spatial patterns of correlations between concentrations of heavy metals in mosses and atmospheric deposition in 2010 across Europe

    Get PDF
    BackgroundThis paper aims to investigate the correlations between the concentrations of nine heavy metals in moss and atmospheric deposition within ecological land classes covering Europe. Additionally, it is examined to what extent the statistical relations are affected by the land use around the moss sampling sites. Based on moss data collected in 2010/2011 throughout Europe and data on total atmospheric deposition modelled by two chemical transport models (EMEP MSC-E, LOTOS-EUROS), correlation coefficients between concentrations of heavy metals in moss and in modelled atmospheric deposition were specified for spatial subsamples defined by ecological land classes of Europe (ELCE) as a spatial reference system. Linear discriminant analysis (LDA) and logistic regression (LR) were then used to separate moss sampling sites regarding their contribution to the strength of correlation considering the areal percentage of urban, agricultural and forestry land use around the sampling location. After verification LDA models by LR, LDA models were used to transform spatial information on the land use to maps of potential correlation levels, applicable for future network planning in the European Moss Survey.ResultsCorrelations between concentrations of heavy metals in moss and in modelled atmospheric deposition were found to be specific for elements and ELCE units. Land use around the sampling sites mainly influences the correlation level. Small radiuses around the sampling sites examined (5km) are more relevant for Cd, Cu, Ni, and Zn, while the areal percentage of urban and agricultural land use within large radiuses (75-100km) is more relevant for As, Cr, Hg, Pb, and V. Most valid LDA models pattern with error rates of <40% were found for As, Cr, Cu, Hg, Pb, and V. Land use-dependent predictions of spatial patterns split up Europe into investigation areas revealing potentially high (=above-average) or low (=below-average) correlation coefficients.ConclusionsLDA is an eligible method identifying and ranking boundary conditions of correlations between atmospheric deposition and respective concentrations of heavy metals in moss and related mapping considering the influence of the land use around moss sampling sites

    Implementation of Petrographical and Aeromagnetic Data to Determine Depth and Structural Trend of Homrit Waggat Area, Central Eastern Desert, Egypt

    No full text
    In the current study, we conducted petrographic investigation combined with aeromagnetic data in order to classify variable granitic rocks, delineate structural trends and deduce depth of the basement rocks cropping out in Homrit Waggat area, Central Eastern Desert, Egypt. Field and petrographic investigations revealed that the granitic Homrit Waggat rocks include two groups. The first group includes the older granitic rocks, comprising tonalites and granodiorites. In contrast, the second one includes younger granitic rocks, involving alkali-feldspar granites, syenogranites and albitized granites. Depth as well as subsurface structures can be identified using magnetic method. Two tectonic maps representing the deep-seated and the shallow-seated structural features were constructed to show the structural history of the study area. The major tectonic trends indicate that the regional structures are controlled by deeper structures which have NW–SE, NNE–SSW—NE–SW and N–S directions. On the other hand, we find that the local structure trends are controlled by the local shallow structures that have NNE–SSW, NNW–SSE, ESE–WNW and N–S directions. Depth levels of the economic rare metal-bearing rocks range from 0 km to 1.2 km (Euler deconvolution technique) and from 0 km to 2.3 km (the analytical signal profiles) by using the aeromagnetic data, reflecting large resources of rare metal-bearing rocks

    Implementation of Petrographical and Aeromagnetic Data to Determine Depth and Structural Trend of Homrit Waggat Area, Central Eastern Desert, Egypt

    No full text
    In the current study, we conducted petrographic investigation combined with aeromagnetic data in order to classify variable granitic rocks, delineate structural trends and deduce depth of the basement rocks cropping out in Homrit Waggat area, Central Eastern Desert, Egypt. Field and petrographic investigations revealed that the granitic Homrit Waggat rocks include two groups. The first group includes the older granitic rocks, comprising tonalites and granodiorites. In contrast, the second one includes younger granitic rocks, involving alkali-feldspar granites, syenogranites and albitized granites. Depth as well as subsurface structures can be identified using magnetic method. Two tectonic maps representing the deep-seated and the shallow-seated structural features were constructed to show the structural history of the study area. The major tectonic trends indicate that the regional structures are controlled by deeper structures which have NW&ndash;SE, NNE&ndash;SSW&mdash;NE&ndash;SW and N&ndash;S directions. On the other hand, we find that the local structure trends are controlled by the local shallow structures that have NNE&ndash;SSW, NNW&ndash;SSE, ESE&ndash;WNW and N&ndash;S directions. Depth levels of the economic rare metal-bearing rocks range from 0 km to 1.2 km (Euler deconvolution technique) and from 0 km to 2.3 km (the analytical signal profiles) by using the aeromagnetic data, reflecting large resources of rare metal-bearing rocks

    Hazards of Radioactive Mineralization Associated with Pegmatites Used as Decorative and Building Material

    No full text
    The present study aimed to assess the radiological hazards associated with applying the investigated granite in the building materials and the infrastructures applications. The investigated granites are classified into four categories: El-Urf, barren, colourful and opaque. El Urf monzogranite intrudes metagabbro diorite complex with sharp contacts. Based on the activity concentrations, the environmental parameters such as absorbed dose rate (Dair), annual effective dose (AED), radium equivalent activity (Raeq), external (Hex) and internal (Hin) hazard indices were measured. The mineralized pegmatite is located in the southwestern foothill of the Gabal El Urf younger granite. It displays well-defined zonation of three zones: outer, middle and inner zones represented by potash feldspar, quartz and mica, respectively. The isorad map showed that El Urf monzogranite is barren (Up to 100 cps) surrounding an excavation of the studied pegmatite that exhibits moderate colorful mineralization (phase-I = 500&ndash;1500 cps) and anomalous opaque mineralization (phase-II = 1500&ndash;3500 cps) pegmatites. The obtained results of radionuclides activity concentrations illustrated that the Opaque granites have the highest values of 238U (561 &plusmn; 127 Bq kg&minus;1), 232Th (4289 &plusmn; 891 Bq kg&minus;1) and 40K (3002 &plusmn; 446 Bq kg&minus;1) in the granites, which are higher than the recommended worldwide average. Many of the radiological hazard parameters were lesser than the international limits in the younger granites and barren pegmatites. All of these parameters were higher in the colorful and opaque mineralized pegmatites. The high activity and the elevated radiological hazard parameters in the mineralized pegmatites are revised to the presence of radioactive and radioelements bearing minerals, such as thorite, meta-autunite, kasolite, phurcalite, columbite, fergusonite, Xenotime and fluorapatite. Other instances of mineralization were also recorded as cassiterite, atacamite, galena, pyrite and iron oxide minerals. Thus, the granites with high radioactivity concentration cannot be applied in the different applications of building materials and ornamental stones
    corecore