20 research outputs found

    Micro-scale impact resistance of coatings on hardened tool steel and cemented carbide

    Get PDF
    © 2020 Elsevier B.V. Micro-impact, a novel accelerated test method for assessing coating durability under repetitive contact, has been developed to concentrate impact-induced stresses close to the interfaces in coating systems. Test results are described for carbon coatings on hardened tool steel and nitride-based coatings on cemented carbide. At higher load it was possible to show the increasing contribution of the substrate properties (load support and ductility) to the coating system response whilst retaining high sensitivity to the coating properties. Hard and elastic carbon coatings on hardened tool steel displayed very low impact resistance under these conditions. Relatively soft carbon-based coatings with more metallic character and high plasticity (low H/E) deposited on hard but tough tool steel were resistant to radial cracking and lateral fracture at high load. Lateral fracture at high load and extensive substrate cracking was observed at higher load for hard nitrides on cemented carbide. The micro-impact test has the potential to significantly speed up the pace of coating system selection for durability under highly loaded repetitive contacts, as occur in coatings applications in engine components and in discontinuous cutting operations

    Characterization of surface Ag nanoparticles in nanocomposite a-C:Ag coatings by grazing incidence X-ray diffraction at sub-critical angles of incidence

    Get PDF
    Silver diffusion within nanocomposite films and/or toward the film surface is often observed during annealing of the silver-based nanocomposite films. In order to control and/or minimize this process, it is crucial to characterize the aggregated silver nanoparticles on the films surface. In this paper grazing incidence X-ray diffraction (GIXRD) with both sub-critical and supra-critical angles of incidence is used to characterize the Ag nanoparticles distribution, shape and structure both inside the matrix and on the nanocomposite film surface. The nanocomposite carbon coating containing Ag nanoparticles (a-C:Ag) was deposited by dc magnetron sputtering. The coatings were analyzed by GIXRD using fixed incident angles both below and above the critical angle for total reflection. By using sub-critical angles it was possible to eliminate diffraction from the bulk material allowing to estimate the size distribution of the nanoparticles sitting on the surface. The results obtained by GIXRD analysis were checked through comparison with the observations made by both TEM and SEM analysis. The proposed methodology can be used to characterized nanoparticles deposition on a surface and/or island formation during film growth as long an adequate substrate with high critical angle for total reflection is used.We gratefully acknowledge the financial support provided by the FCT—Fundação para a Ciência e Tecnologia and FSE for the grant SFRH/BD/82472/2011. This research is sponsored by the FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade and by the national funds through FCT—Fundação para a Ciência e Tecnologia in the framework of the Strategic Projects PEST C/EME/UIO0285/2011

    Antimicrobial Properties of Nanostructured TiO2 Plus Fe Additive Thin Films Synthesized by a Cost-Effective Sol-Gel Process

    No full text
    We prepared thin films composed of pure TiO2 or TiO2 with an Fe additive (at concentrations of 0.2-0.8 wt%) via a simple and cost effective sol gel process, and tested their antifungal properties (against Candida albicans (MTCC-1637), Candida tropicalis (MTCC-184), Candida parapsilosis (MTCC-2509), and Candida glabrata (MTCC-3019) and antibacterial properties (against Staphylococcus faecalis (NCIM-2604) Staphylococcus epidermidis (NCIM-2493), Staphylococcus aureus (NCIL-2122), and Bacillus subtilis (NCIM-2549)). The films were deposited on glass and Si substrates and subjected to annealing at 400 degrees C for 3 h in ambient air. The film structural and morphological properties were investigated by X-ray photoelectron spectroscopy profilometry and scanning electron microscopy, respectively. Antifungal and antibacterial tests were conducted using the drop test method. Among the species examined, Candida albicans (MTCC-1637), and Staphylococcus aureus (NCIL-2122) showed complete colony formation inhibition after exposure for 4 h for the TiO2 loaded with 0.8 wt% Fe thin films. These results indicate that increasing the Fe concentration increased the antimicrobial activity, with complete inhibition of colony formation after 4 h exposure

    Benchmarking of several material constitutive models for tribology, wear, and other mechanical deformation simulations of Ti6Al4V

    No full text
    Use of an alpha-beta (multiphase HCP-BCC) titanium alloy, Ti6Al4V, is ubiquitous in a wide range of engineering applications. The previous decade of finite element analysis research on various titanium alloys for numerous biomedical applications especially in the field of orthopedics has led to the development of more than half a dozen material constitutive models, with no comparison available between them. Part of this problem stems from the complexity of developing a vectorised user-defined material subroutine (VUMAT) and the different conditions (strain rate, temperature and composition of material) in which these models are experimentally informed. This paper examines the extant literature to review these models and provides quantitative benchmarking against the tabulated material model and a power law model of Ti6Al4V taking the test case of a uniaxial tensile and cutting simulation

    Biocompatible and Antibacterial SnO2 Nanowire Films Synthesized by E-Beam Evaporation Method

    No full text
    In this work, the biocompatibility and antibacterial activities of novel SnO2 nanowire coatings prepared by electron-beam (E-Beam) evaporation process at low temperatures were studied. The nanowire coatings were characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDX), and X-ray diffraction (XRD) methods. The results of in vitro cytotoxicity and cell proliferation assays suggested that the SnO2 nanowire coatings were nontoxic and promoted the proliferation of C2C12 and L929 cells (> 90% viability). Cellular activities, cell adhesion, and lactate dehydrogenase activities were consistent with the superior biocompatibility of the nanowire materials. Notably, the nanowire coating showed potent antibacterial activity against six different bacterial strains. The antibacterial activity of the SnO2 material was attributed to the photocatalytic nature of SnO2. The antibacterial activity and biocompatibility of the newly developed SnO2 nanowire coatings may enable their use as coating materials for biomedical implants
    corecore