132 research outputs found

    Determination of bioequivalence for drugs with narrow therapeutic index

    Get PDF
    The US Food and Drug Administration (FDA) has recently suggested that the bioequivalence (BE) for products of drugs with narrow therapeutic indices (NTI) be assessed by the approach of reference-scaled average BE (SABE). Subsequently, in December, 2012, the FDA issued draft guidances for the comparison of products of warfarin sodium and of tacrolimus. The guidances expect that 4-period studies be performed, that the results be evaluated by SABE, and that the analysis include also unscaled average BE as well as the comparison of the estimated within-subject variations (sW) of the test and reference drug products. This communication discusses the new guidances and suggests considerations to reduce the regulatory burden. It is demonstrated that SABE could be applied when the within-subject variation of the reference product is not higher than 21.42%. Beyond this variation, the BE limits would remain 80% to 125%, as usual. No further testing by unscaled average BE is needed. It is also suggested that a comparison of the within-subject variations of the two drug products although interesting for both NTI and other drugs, is not essential for the determination of BE. In addition, when the within-subject variabilities are low then their ratio depends mainly on the non-product dependent factors. Moreover, introduction of an additional test would affect the probabilities involved in the primary comparison of the two means. Therefore, the test of comparing variances is not needed and replicate measurements of the test formulation need not be performed. Alternative considerations and approaches, including the use of partial AUC's, are suggested for the determination of BE for NTI drugs.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page

    Robust regression of enzyme kinetic data

    Full text link

    Proposing the use of partial AUC as an adjunctive measure in establishing bioequivalence between deltoid and gluteal administration of long-acting injectable antipsychotics

    Get PDF
    The maximum plasma concentration (Cmax) and the area under the plasma concentration–time curve (AUC) are commonly used to establish bioequivalence between two formulations of the same oral medication. Similarly, these pharmacokinetic parameters have also been used to establish bioequivalence between two sites of administration for the same injectable formulation. However, these conventional methods of establishing bioequivalence are of limited use when comparing modified-release formulations of a drug, particularly those with rates of absorption that are amenable to change with the site of injection. Inherent differences in the rate of absorption can result in clinically significant differences in early exposure and drug response. Here, we propose the use of the partial AUC (pAUC) as a measure of early exposure to aid in the assessment of bioequivalence between the gluteal and the deltoid site of administration for long-acting injectable antipsychotics

    Why Were More Than 200 Subjects Required to Demonstrate the Bioequivalence of a New Formulation of Levothyroxine with an Old One?

    Get PDF
    At the request of French Regulatory Authorities, a new formulation of Levothyrox¼ was licensed in France in 2017, with the objective of avoiding the stability deficiencies of an existing licensed formulation. Before launching the new formulation, an average bioequivalence (ABE) trial was conducted, having enrolled 204 subjects and selected for interpretation a narrow a priori bioequivalence range of 0.90–1.11. Bioequivalence was concluded. In a previous publication, we questioned the ability of an ABE trial to guarantee the switchability within patients of the new and old levothyroxine formulations. It was suggested that the two formulations should be compared using the conceptual framework of individual bioequivalence. The present paper is a response to those claiming that, despite the fact that ABE analysis does not formally address the switchability of the two formulations, future patients will nevertheless be fully protected. The basis for this claim is that the ABE study was established in a large trial and analyzed using a stringent a priori acceptance interval of equivalence. These claims are questionable, because the use of a very large number of subjects nullifies the implicit precautionary intention of the European guideline when, for a Narrow Therapeutic Index drug, it recommends shortening the a priori acceptance interval from 0.80–1.25 to 0.90–1.11

    LevothyroxÂź new and old formulations: are they switchable for millions of patients?

    Get PDF
    International audienceIn France, more than 2.5 million patients are currently treated with levothyroxine, mainly as the marketed product Levothyrox Âź. In March 2017, at the request of French authorities, a new formulation of Levothyrox Âź was licensed, with the objective of avoiding stability deficiencies of the old formulation. Before launching this new formulation, an average bioequivalence trial, based on European Union recommended guidelines, was performed. The implicit rationale was the assumption that the two products, being bioequivalent, would also be switchable, allowing substitution of the new for the old formulation, thus avoiding the need for individual calibration of the dosage regimen of thyroxine, using the thyroid-stimulating hormone level as the endpoint, as required for a new patient on initiating treatment. Despite the fact that both formulations were shown to be bioequivalent, adverse drug reactions were reported in several thousands of patients after taking the new formulation. In this opinion paper, we report that more than 50% of healthy volunteers enrolled in a successful regulatory average bioequivalence trial were actually outside the a priori bioequivalence range. Therefore, we question the ability of an average bioequivalence trial to guarantee the switchability within patients of the new and old levothyroxine formulations. We further propose an analysis of this problem using the conceptual framework of individual bioequivalence. This involves investigating the bioavailability of the two formulations within a subject, by comparing not only the population means (as established by average bioequivalence) but also by assessing two variance terms, namely the within-subject variance and the variance estimating subject-by-formulation interaction. A higher within individual variability for the new formulation would lead to reconsideration of the appropriateness of the new formulation. Alternatively, a possible subject-by-formulation interaction would allow a judgement on the ability, or not, of doctors to manage patients effectively during transition from the old to the new formulation

    Individualizing therapy – in search of approaches to maximize the benefit of drug treatment (II)

    Get PDF
    Adjusting drug therapy to the individual, a common approach in clinical practice, has evolved from 1) dose adjustments based on clinical effects to 2) dose adjustments made in response to drug levels and, more recently, to 3) dose adjustments based on deoxyribonucleic acid (DNA) sequencing of drug-metabolizing enzyme genes, suggesting a slow drug metabolism phenotype. This development dates back to the middle of the 20(th )century, when several different drugs were administered on the basis of individual plasma concentration measurements. Genetic control of drug metabolism was well established by the 1960s, and pharmakokinetic-based individualized therapy was in use by 1973

    Comparison of two recombinant erythropoietin formulations in patients with anemia due to end-stage renal disease on hemodialysis: A parallel, randomized, double blind study

    Get PDF
    BACKGROUND: Recombinant human erythropoietin (EPO) is used for the treatment of last stage renal anemia. A new EPO preparation was obtained in Cuba in order to make this treatment fully nationally available. The aim of this study was to compare the pharmacokinetic, pharmacodynamic and safety properties of two recombinant EPO formulations in patients with anemia due to end-stage renal disease on hemodialysis. METHODS: A parallel, randomized, double blind study was performed. A single 100 IU/Kg EPO dose was administered subcutaneously. Heberitro (Heber Biotec, Havana, formulation A), a newly developed product and Eprex (CILAG AG, Switzerland, formulation B), as reference treatment were compared. Thirty-four patients with anemia due to end-stage renal disease on hemodialysis were included. Patients had not received EPO previously. Serum EPO level was measured by enzyme immunoassay (EIA) during 120 hours after administration. Clinical and laboratory variables were determined as pharmacodynamic and safety criteria until 216 hours. RESULTS: Both groups of patients were similar regarding all demographic and baseline characteristics. EPO kinetics profiles were similar for both formulations; the pharmacokinetic parameters were very close (i.e., AUC: 4667 vs. 4918 mIU.h/mL; Cmax: 119.1 vs. 119.7 mIU/mL; Tmax: 13.9 vs. 18.1 h; half-life, 20.0 vs. 22.5 h for formulations A and B, respectively). The 90% confidence intervals for the ratio between both products regarding these metrics were close to the 0.8 – 1.25 range, considered necessary for bioequivalence. Differences did not reach 20% in any case and were not determined by a formulation effect, but probably by a patients' variability effect. Concerning pharmacodynamic features, a high similitude in reticulocyte counts increments until 216 hours and the percentage decrease in serum iron until 120 hours was observed. There were no differences between formulations regarding the adverse events and their intensity. The more frequent events were pain at injection site (35.3%) and hypertension (29%). Additionally, further treatment of the patients with the study product yielded satisfactory increases in hemoglobin and hematocrit values. CONCLUSION: The formulations are comparable. The newly developed product should be acceptable for long-term application
    • 

    corecore