15 research outputs found

    A hemispheric two-channel code accounts for binaural unmasking in humans

    Full text link
    The ability to localize sound sources relies on differences between the signals at the two ears. These differences are also the basis for binaural unmasking, an improvement in detecting or understanding a sound masked by sources from other locations. The neurocomputational operation that underlies binaural unmasking is still a matter of debate. Current models rely on the cross-correlation function of the signals at the two ears, the neuronal substrate of which has been observed in the barn owl but not in mammals. This disagreement lead to the formulation of an alternative coding mechanism where interaural differences are encoded using the neuronal activity within two hemispheric channels. This mechanism agrees with mammalian physiology but has not yet been shown to account for binaural unmasking in humans. This study introduces a new mathematical formulation for the two-channel model, which is then used to explain the outcome of an extensive library of psychoacoustic experiments

    Statistics of the interaural parameters for dichotic tones in diotic noise (N0SψN_0 S_\psi)

    Full text link
    Stimuli consisting of an interaurally phase-shifted tone in diotic noise -- often referred to as N0SψN_0 S_\psi -- are commonly used in the field of binaural hearing. As a consequence of mixing diotic noise with a dichotic tone, this type of stimulus contains random fluctuations in both interaural phase- and level-difference. This study reports the joint probability density functions of the two interaural differences as a function of amplitude and interaural phase of the tone. Furthermore, a second joint probability density function for interaural phase differences and the instantaneous power of the stimulus is derived

    Comparison of Multi-Compartment Cable Models of Human Auditory Nerve Fibers

    Get PDF
    Background: Multi-compartment cable models of auditory nerve fibers have been developed to assist in the improvement of cochlear implants. With the advancement of computational technology and the results obtained from in vivo and in vitro experiments, these models have evolved to incorporate a considerable degree of morphological and physiological details. They have also been combined with three-dimensional volume conduction models of the cochlea to simulate neural responses to electrical stimulation. However, no specific rules have been provided on choosing the appropriate cable model, and most models adopted in recent studies were chosen without a specific reason or by inheritance. Methods: Three of the most cited biophysical multi-compartment cable models of the human auditory nerve, i.e., Rattay et al. (2001b), Briaire and Frijns (2005), and Smit et al. (2010), were implemented in this study. Several properties of single fibers were compared among the three models, including threshold, conduction velocity, action potential shape, latency, refractory properties, as well as stochastic and temporal behaviors. Experimental results regarding these properties were also included as a reference for comparison. Results: For monophasic single-pulse stimulation, the ratio of anodic vs. cathodic thresholds in all models was within the experimental range despite a much larger ratio in the model by Briaire and Frijns. For biphasic pulse-train stimulation, thresholds as a function of both pulse rate and pulse duration differed between the models, but none matched the experimental observations even coarsely. Similarly, for all other properties including the conduction velocity, action potential shape, and latency, the models presented different outcomes and not all of them fell within the range observed in experiments. Conclusions: While all three models presented similar values in certain single fiber properties to those obtained in experiments, none matched all experimental observations satisfactorily. In particular, the adaptation and temporal integration behaviors were completely missing in all models. Further extensions and analyses are required to explain and simulate realistic auditory nerve fiber responses to electrical stimulation

    Cooperative population coding facilitates efficient sound-source separability by adaptation to input statistics

    Get PDF
    Our sensory environment changes constantly. Accordingly, neural systems continually adapt to the concurrent stimulus statistics to remain sensitive over a wide range of conditions. Such dynamic range adaptation (DRA) is assumed to increase both the effectiveness of the neuronal code and perceptual sensitivity. However, direct demonstrations of DRA-based efficient neuronal processing that also produces perceptual benefits are lacking. Here, we investigated the impact of DRA on spatial coding in the rodent brain and the perception of human listeners. Complex spatial stimulation with dynamically changing source locations elicited prominent DRA already on the initial spatial processing stage, the Lateral Superior Olive (LSO) of gerbils. Surprisingly, on the level of individual neurons, DRA diminished spatial tuning because of large response variability across trials. However, when considering single-trial population averages of multiple neurons, DRA enhanced the coding efficiency specifically for the concurrently most probable source locations. Intrinsic LSO population imaging of energy consumption combined with pharmacology revealed that a slow-acting LSO gain-control mechanism distributes activity across a group of neurons during DRA, thereby enhancing population coding efficiency. Strikingly, such "efficient cooperative coding" also improved neuronal source separability specifically for the locations that were most likely to occur. These location-specific enhancements in neuronal coding were paralleled by human listeners exhibiting a selective improvement in spatial resolution. We conclude that, contrary to canonical models of sensory encoding, the primary motive of early spatial processing is efficiency optimization of neural populations for enhanced source separability in the concurrent environment

    Acute cholecystitis – early laparoskopic surgery versus antibiotic therapy and delayed elective cholecystectomy: ACDC-study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Acute cholecystitis occurs frequently in the elderly and in patients with gall stones. Most cases of severe or recurrent cholecystitis eventually require surgery, usually laparoscopic cholecystectomy in the Western World. It is unclear whether an initial, conservative approach with antibiotic and symptomatic therapy followed by delayed elective surgery would result in better morbidity and outcome than immediate surgery. At present, treatment is generally determined by whether the patient first sees a surgeon or a gastroenterologist. We wish to investigate whether both approaches are equivalent. The primary endpoint is the morbidity until day 75 after inclusion into the study.</p> <p>Design</p> <p>A multicenter, prospective, randomized non-blinded study to compare treatment outcome, complications and 75-day morbidity in patients with acute cholecystitis randomized to laparoscopic cholecystectomy within 24 hours of symptom onset or antibiotic treatment with moxifloxacin and subsequent elective cholecystectomy. For consistency in both arms moxifloxacin, a fluorquinolone with broad spectrum of activity and high bile concentration is used as antibiotic. Duration: October 2006 – November 2008</p> <p>Organisation/Responsibility</p> <p>The trial was planned and is being conducted and analysed by the Departments of Gastroenterology and General Surgery at the University Hospital of Heidelberg according to the ethical, regulatory and scientific principles governing clinical research as set out in the Declaration of Helsinki (1989) and the Good Clinical Practice guideline (GCP).</p> <p>Trial Registration</p> <p>ClinicalTrials.gov NCT00447304</p

    Extraction of Inter-Aural Time Differences Using a Spiking Neuron Network Model of the Medial Superior Olive

    No full text
    The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech

    Data_Sheet_1_Statistics of the instantaneous interaural parameters for dichotic tones in diotic noise (N0Sψ).PDF

    No full text
    Stimuli consisting of an interaurally phase-shifted tone in diotic noise—often referred to as N0Sψ—are commonly used to study binaural hearing. As a consequence of mixing diotic noise with a dichotic tone, this type of stimulus contains random fluctuations in both interaural phase- and level-difference. We report the joint probability density functions of the two interaural differences as a function of amplitude and interaural phase of the tone. Furthermore, a second joint probability density function for interaural phase differences and the instantaneous cross-power is derived. The closed-form expression can be used in future studies of binaural unmasking first to obtain the interaural statistics and then study more directly the relation between those statistics and binaural tone detection.</p

    Image1.PDF

    No full text
    <p>The mammalian auditory system is able to extract temporal and spectral features from sound signals at the two ears. One important cue for localization of low-frequency sound sources in the horizontal plane are inter-aural time differences (ITDs) which are first analyzed in the medial superior olive (MSO) in the brainstem. Neural recordings of ITD tuning curves at various stages along the auditory pathway suggest that ITDs in the mammalian brainstem are not represented in form of a Jeffress-type place code. An alternative is the hemispheric opponent-channel code, according to which ITDs are encoded as the difference in the responses of the MSO nuclei in the two hemispheres. In this study, we present a physiologically-plausible, spiking neuron network model of the mammalian MSO circuit and apply two different methods of extracting ITDs from arbitrary sound signals. The network model is driven by a functional model of the auditory periphery and physiological models of the cochlear nucleus and the MSO. Using a linear opponent-channel decoder, we show that the network is able to detect changes in ITD with a precision down to 10 μs and that the sensitivity of the decoder depends on the slope of the ITD-rate functions. A second approach uses an artificial neuronal network to predict ITDs directly from the spiking output of the MSO and ANF model. Using this predictor, we show that the MSO-network is able to reliably encode static and time-dependent ITDs over a large frequency range, also for complex signals like speech.</p
    corecore