6 research outputs found

    Phytochemical constituents and biological activities of 3 Melicope lunu-ankenda

    Get PDF
    Natural products, either pure compounds or standardized plant extracts, have provided opportunities for the discovery of new drugs. Nowadays, most of the world’s population still relies on traditional medicines for healthcare purposes. Plants, particular, are always used as traditional medicine, as they contain a diverse number of phytochemicals that can be used for the treatment of diseases. The multicomponent feature in the plants is considered a positive phytotherapeutic hallmark. Hence, ethnopharmacognosy has been the focus for finding alternative treatments for diseases. Melicope lunu-ankenda, also known as Euodia lunu-ankenda, is widely distributed in tropical regions of Asia. Different parts of M. lunu-ankenda have been used for treatment of hypertension, menstrual disorder, diabetes, and fever, and as an emmenagogue and tonic. It has also been consumed as salad and as a condiment for food flavorings. The justification of use of M. lunu-ankenda in folk medicines is supported by its reported biological activities, including its cytotoxic, antibacterial, antioxidant, analgesic, antidiabetic, and anti-inflammatory activities. This review summarizes the phytochemical compounds isolated from various parts of M. lunu-ankenda, such as root and leaves, and also its biological activities, which could make the species a new therapeutic agent for some diseases, including diabetes, in the future

    Neuroprotective effects of 7-geranyloxycinnamic acid from Melicope lunu ankenda leaves

    Get PDF
    Neurodegenerative diseases (NDDs) are chronic conditions that have drawn robust interest from the scientific community. Phytotherapeutic agents are becoming an important source of chemicals for the treatment and management of NDDs. Various secondary metabolites have been isolated from Melicope lunu-ankenda plant leaves, including phenolic acid derivatives. However, their neuroprotective activity remains unclear. Thus, the aim of this study is to elucidate the in vitro neuroprotective activity of 7-geranyloxycinnamic acid isolated from Melicope lunu-ankenda leaves. The neuroprotective activity was evaluated in differentiated human neuroblastoma (SH-SY5Y) cells by monitoring cell viability using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Moreover, the potential to impair apoptosis in differentiated cells was investigated employing the Annexin V-FITC assay, acridine orange and propidium iodide (AO/PI) staining, and fluorescence microscopy. Morphological assessment and ultrastructural analysis were performed using scanning and transmission electron microscopy to evaluate the effect of 7-geranyloxycinnamic acid on surface morphology and internal features of the differentiated cells. Pre-treatment of neuronal cells with 7-geranyloxycinnamic acid significantly protected the differentiated SH-SY5Y cells against H2O2-induced apoptosis. Cytoskeleton and cytoplasmic inclusion were similarly protected by the 7-geranyloxycinnamic acid treatment. The present findings demonstrate the neuroprotective potential of 7-geranyloxycinnamic acid against H2O2-induced neurotoxicity in neuronal cells, which is an established hallmark of neuronal disorders

    Neuroprotective potential of secondary metabolites from Melicope lunu-ankenda (Rutaceae)

    No full text
    Plant natural compounds have great potential as alternative medicines for preventing and treating diseases. Melicope lunu-ankenda is one Melicope species (family Rutaceae), which is widely used in traditional medicine, consumed as a salad and a food seasoning. Consumption of different parts of this plant has been reported to exert different biological activities such as antioxidant and anti-inflammatory qualities, resulting in a protective effect against several health disorders including neurodegenerative diseases. Various secondary metabolites such as phenolic acid derivatives, flavonoids, coumarins and alkaloids, isolated from the M. lunu-ankenda plant, were demonstrated to have neuroprotective activities and also exert many other beneficial biological effects. A number of studies have revealed different neuroprotective mechanisms for these secondary metabolites. This review summarizes the most significant and recent studies for neuroprotective activity of M. lunu-ankenda major secondary metabolites in neurodegenerative diseases

    Nontoxic Glucomoringin-Isothiocyanate (GMG-ITC) Rich Soluble Extract Induces Apoptosis and Inhibits Proliferation of Human Prostate Adenocarcinoma Cells (PC-3)

    No full text
    The incidence of prostate cancer malignancy along with other cancer types is increasing worldwide, resulting in high mortality rate due to lack of effective medications. Moringa oleifera has been used for the treatment of communicable and non-communicable ailments across tropical countries, yet, little has been documented regarding its effect on prostate cancer. We evaluated the acute toxicity and apoptosis inducing effect of glucomoringin-isothiocyanate rich soluble extracts (GMG-ITC-RSE) from M. oleifera in vivo and in vitro, respectively. Glucomoringin was isolated, identified, and characterized using fundamental analytical chemistry tools where Sprague-Dawley (SD) rats, murine fibroblast (3T3), and human prostate adenocarcinoma cells (PC-3) were used for acute toxicity and bioassays experiments. GMG-ITC-RSE did not instigate adverse toxic reactions to the animals even at high doses (2000 mg/kg body weight) and affected none of the vital organs in the rats. The extract exhibited high levels of safety in 3T3 cells, where more than 90% of the cells appeared viable when treated with the extract in a time-dependent manner even at high dose (250 µg/mL). GMG-ITC-RSE significantly triggered morphological aberrations distinctive to apoptosis observed under microscope. These findings obviously revealed the putative safety of GMG-ITC-RSE in vivo and in vitro, in addition to its anti-proliferative effect on PC-3 cells
    corecore