1,523 research outputs found
Human immunodeficiency virus type-1 (HIV-1) continues to evolve in presence of broadly neutralizing antibodies more than ten years after infection.
BACKGROUND: The evolution of HIV-1 and its immune escape to autologous neutralizing antibodies (Nabs) during the acute/early phases of infection have been analyzed in depth in many studies. In contrast, little is known about neither the long-term evolution of the virus in patients who developed broadly Nabs (bNabs) or the mechanism of escape in presence of these bNabs. RESULTS: We have studied the viral population infecting a long term non progressor HIV-1 infected patient who had developed broadly neutralizing antibodies toward all tier 2/3 viruses (6 clades) tested, 9 years after infection, and was then followed up over 7 years. The autologous neutralization titers of the sequential sera toward env variants representative of the viral population significantly increased during the follow-up period. The most resistant pseudotyped virus was identified at the last visit suggesting that it represented a late emerging escape variant. We identified 5 amino acids substitutions that appeared associated with escape to broadly neutralizing antibodies. They were V319I/S, R/K355T, R/W429G, Q460E and G/T463E, in V3, C3 and V5 regions. CONCLUSION: This study showed that HIV-1 may continue to evolve in presence of both broadly neutralizing antibodies and increasing autologous neutralizing activity more than 10 years post-infection
Continuous evolution of HIV-1 more than ten years after infection in an elite neutralizer
International audienc
Mice carrying a human GLUD2 gene recapitulate aspects of human transcriptome and metabolome development
Whereas all mammals have one glutamate dehydrogenase gene (GLUD1), humans and apes carry an additional gene (GLUD2), which encodes an enzyme with distinct biochemical properties. We inserted a bacterial artificial chromosome containing the human GLUD2 gene into mice and analyzed the resulting changes in the transcriptome and metabolome during postnatal brain development. Effects were most pronounced early postnatally, and predominantly genes involved in neuronal development were affected. Remarkably, the effects in the transgenic mice partially parallel the transcriptome and metabolome differences seen between humans and macaques analyzed. Notably, the introduction of GLUD2 did not affect glutamate levels in mice, consistent with observations in the primates. Instead, the metabolic effects of GLUD2 center on the tricarboxylic acid cycle, suggesting that GLUD2 affects carbon flux during early brain development, possibly supporting lipid biosynthesis
The Effect of Transposable Element Insertions on Gene Expression Evolution in Rodents
Background:Many genomes contain a substantial number of transposable elements (TEs), a few of which are known to be involved in regulating gene expression. However, recent observations suggest that TEs may have played a very important role in the evolution of gene expression because many conserved non-genic sequences, some of which are know to be involved in gene regulation, resemble TEs. Results:Here we investigate whether new TE insertions affect gene expression profiles by testing whether gene expression divergence between mouse and rat is correlated to the numbers of new transposable elements inserted near genes. We show that expression divergence is significantly correlated to the number of new LTR and SINE elements, but not to the numbers of LINEs. We also show that expression divergence is not significantly correlated to the numbers of ancestral TEs in most cases, which suggests that the correlations between expression divergence and the numbers of new TEs are causal in nature. We quantify the effect and estimate that TE insertion has accounted for ~20% (95% confidence interval: 12% to 26%) of all expression profile divergence in rodents. Conclusions:We conclude that TE insertions may have had a major impact on the evolution of gene expression levels in rodents
Gene expression drives the evolution of dominance.
Dominance is a fundamental concept in molecular genetics and has implications for understanding patterns of genetic variation, evolution, and complex traits. However, despite its importance, the degree of dominance in natural populations is poorly quantified. Here, we leverage multiple mating systems in natural populations of Arabidopsis to co-estimate the distribution of fitness effects and dominance coefficients of new amino acid changing mutations. We find that more deleterious mutations are more likely to be recessive than less deleterious mutations. Further, this pattern holds across gene categories, but varies with the connectivity and expression patterns of genes. Our work argues that dominance arises as a consequence of the functional importance of genes and their optimal expression levels
Comparison of two types of 60 GHz photonic millimeter-wave generation and distribution of a 3 Gb/s OFDM signal
International audienceWe demonstrate and compare experimentally two set-ups achieving very high data rate (3 Gbps) wireless transmission in the 60 GHz window, both using Radio-over-Fiber (RoF) for reach extension with OFDM signal compliant to the IEEE 802.15.3.c pre-standard
Transmission Quality Measurement of Two Types of 60 GHz Millimeter-Wave Generation and Distribution Systems
International audienceIn this paper, we demonstrate and compare experimentally two techniques achieving very high-data-rates (> 1 Gb/s) wireless transmission in the 60 GHz window using radio over fiber (RoF) for reach extension. The first RoF link is based on a 10 GHz vertical-cavity surface-emitting laser and uses a multimode fiber. The radio signal is transported on an intermediate frequency of 4.5 GHz and electrically upconverted to 60 GHz after the optical link. The second uses an optical frequency upconversion from 4.5 to 60 GHz by direct modulation of a mode-locked Fabry-PEacuterot laser whose self-pulsating frequency is 54.8 GHz before transmission over a single-mode fiber. For both techniques, two different types of modulation were tested. The first one was an on-off keying at 1.5 Gb/s and the second one was an orthogonal frequency-division multiplexing-QPSK signal compliant to the IEEE 802.15.3.c prestandard (3.03 Gb/s). Radio propagation performance is also reported
Recommended from our members
Q&A: What is human language, when did it evolve and why should we care?
Human language is unique among all forms of animal communication. It is unlikely that any other species, including our close genetic cousins the Neanderthals, ever had language, and so-called sign 'language' in Great Apes is nothing like human language. Language evolution shares many features with biological evolution, and this has made it useful for tracing recent human history and for studying how culture evolves among groups of people with related languages. A case can be made that language has played a more important role in our species' recent (circa last 200,000 years) evolution than have our genes
- …
