36 research outputs found
Stacking domains and dislocation networks in marginally twisted bilayers of transition metal dichalcogenides
We apply a multiscale modeling approach to study lattice reconstruction in
marginally twisted bilayers of transition metal dichalcogenides (TMD). For
this, we develop DFT-parametrized interpolation formulae for interlayer
adhesion energies of MoSe, WSe, MoS, and WS, combine those with
elasticity theory, and analyze the bilayer lattice relaxation into mesoscale
domain structures. Paying particular attention to the inversion asymmetry of
TMD monolayers, we show that 3R and 2H stacking domains, separated by a network
of dislocations develop for twist angles and for,
respectively, bilayers with parallel (P) and antiparallel (AP) orientation of
the monolayer unit cells and suggest how the domain structures would manifest
itself in local probe scanning of marginally twisted P- and AP-bilayers