3 research outputs found

    Protein–Polymer Conjugation via Ligand Affinity and Photoactivation of Glutathione <i>S</i>‑Transferase

    No full text
    A photoactivated, site-selective conjugation of poly­(ethylene glycol) (PEG) to the glutathione (GSH) binding pocket of glutathione <i>S</i>-transferase (GST) is described. To achieve this, a GSH analogue (GSH-BP) was designed and chemically synthesized with three functionalities: (1) the binding affinity of GSH to GST, (2) a free thiol for polymer functionalization, and (3) a photoreactive benzophenone (BP) component. Different molecular weights (2 kDa, 5 kDa, and 20 kDa) of GSH-BP modified PEGs (GSBP-PEGs) were synthesized and showed conjugation efficiencies between 52% and 76% to GST. Diazirine (DA) PEG were also prepared but gave conjugation yields lower than for GSBP-PEGs. PEGs with different end-groups were also synthesized to validate the importance of each component in the end-group design. End-groups included glutathione (GS-PEG) and benzophenone (BP-PEG). Results showed that both GSH and BP were crucial for successful conjugation to GST. In addition, conjugations of 5 kDa GSBP-PEG to different proteins were investigated, including bovine serum albumin (BSA), lysozyme (Lyz), ubiquitin (Ubq), and GST-fused ubiquitin (GST-Ubq) to ensure specific binding to GST. By combining noncovalent and covalent interactions, we have developed a new phototriggered protein–polymer conjugation method that is generally applicable to GST-fusion proteins

    Trehalose Glycopolymers as Excipients for Protein Stabilization

    No full text
    Herein, the synthesis of four different trehalose glycopolymers and investigation of their ability to stabilize proteins to heat and lyophilization stress are described. The disaccharide, α,α-trehalose, was modified with a styrenyl acetal, methacrylate acetal, styrenyl ether, or methacrylate moiety resulting in four different monomers. These monomers were then separately polymerized using free radical polymerization with azobisisobutyronitrile (AIBN) as an initiator to synthesize the glycopolymers. Horseradish peroxidase and glucose oxidase were incubated at 70 and 50 °C, respectively, and β-galactosidase was lyophilized multiple times in the presence of various ratios of the polymers or trehalose. The protein activities were subsequently tested and found to be significantly higher when the polymers were present during the stress compared to no additive and to equivalent amounts of trehalose. Different molecular weights (10 kDa, 20 kDa, and 40 kDa) were tested, and all were equivalent in their stabilization ability. However, some subtle differences were observed regarding stabilization ability between the different polymer samples, depending on the stress. Small molecules such as benzyl ether trehalose were not better stabilizers than trehalose, and the trehalose monomer decreased protein activity, suggesting that hydrophobized trehalose was not sufficient and that the polymeric structure was required. In addition, cytotoxicity studies with NIH 3T3 mouse embryonic fibroblast cells, RAW 264.7 murine macrophages, human dermal fibroblasts (HDFs), and human umbilical vein endothelial cells (HUVECs) were conducted with polymer concentrations up to 8 mg/mL. The data showed that all four polymers were noncytotoxic for all tested concentrations. The results together suggest that trehalose glycopolymers are promising as additives to protect proteins from a variety of stressors
    corecore