183 research outputs found

    Astrophysical data analysis with information field theory

    Full text link
    Non-parametric imaging and data analysis in astrophysics and cosmology can be addressed by information field theory (IFT), a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms. It exploits spatial correlations of the signal fields even for nonlinear and non-Gaussian signal inference problems. The alleviation of a perception threshold for recovering signals of unknown correlation structure by using IFT will be discussed in particular as well as a novel improvement on instrumental self-calibration schemes. IFT can be applied to many areas. Here, applications in in cosmology (cosmic microwave background, large-scale structure) and astrophysics (galactic magnetism, radio interferometry) are presented.Comment: 4 pages, 2 figures, accepted chapter to the conference proceedings for MaxEnt 2013, to be published by AI

    Information field theory

    Full text link
    Non-linear image reconstruction and signal analysis deal with complex inverse problems. To tackle such problems in a systematic way, I present information field theory (IFT) as a means of Bayesian, data based inference on spatially distributed signal fields. IFT is a statistical field theory, which permits the construction of optimal signal recovery algorithms even for non-linear and non-Gaussian signal inference problems. IFT algorithms exploit spatial correlations of the signal fields and benefit from techniques developed to investigate quantum and statistical field theories, such as Feynman diagrams, re-normalisation calculations, and thermodynamic potentials. The theory can be used in many areas, and applications in cosmology and numerics are presented.Comment: 8 pages, in-a-nutshell introduction to information field theory (see http://www.mpa-garching.mpg.de/ift), accepted for the proceedings of MaxEnt 2012, the 32nd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineerin

    The rationality of irrationality in the Monty Hall problem

    Full text link
    The rational solution of the Monty Hall problem unsettles many people. Most people, including the authors, think it feels wrong to switch the initial choice of one of the three doors, despite having fully accepted the mathematical proof for its superiority. Many people, if given the choice to switch, think the chances are fifty-fifty between their options, but still strongly prefer to stay with their initial choice. Is there some sense behind these irrational feelings? We entertain the possibility that intuition solves the problem of how to behave in a real game show, not in the abstract textbook version of the Monty Hall problem. A real showmaster sometimes plays evil, either to make the show more interesting, to save money, or because he is in a bad mood. A moody showmaster erases any information advantage the guest could extract by him opening other doors which drives the chance of the car being behind the chosen door towards fifty percent. Furthermore, the showmaster could try to read or manipulate the guest's strategy to the guest's disadvantage. Given this, the preference to stay with the initial choice turns out to be a very rational defense strategy of the show's guest against the threat of being manipulated by its host. Thus, the intuitive feelings most people have about the Monty Hall problem coincide with what would be a rational strategy for a real-world game show. Although these investigations are mainly intended to be an entertaining mathematical commentary on an information-theoretic puzzle, they touch on interesting psychological questions.Comment: 4 pages, no figures, revised articl

    D3^3PO - Denoising, Deconvolving, and Decomposing Photon Observations

    Full text link
    The analysis of astronomical images is a non-trivial task. The D3PO algorithm addresses the inference problem of denoising, deconvolving, and decomposing photon observations. Its primary goal is the simultaneous but individual reconstruction of the diffuse and point-like photon flux given a single photon count image, where the fluxes are superimposed. In order to discriminate between these morphologically different signal components, a probabilistic algorithm is derived in the language of information field theory based on a hierarchical Bayesian parameter model. The signal inference exploits prior information on the spatial correlation structure of the diffuse component and the brightness distribution of the spatially uncorrelated point-like sources. A maximum a posteriori solution and a solution minimizing the Gibbs free energy of the inference problem using variational Bayesian methods are discussed. Since the derivation of the solution is not dependent on the underlying position space, the implementation of the D3PO algorithm uses the NIFTY package to ensure applicability to various spatial grids and at any resolution. The fidelity of the algorithm is validated by the analysis of simulated data, including a realistic high energy photon count image showing a 32 x 32 arcmin^2 observation with a spatial resolution of 0.1 arcmin. In all tests the D3PO algorithm successfully denoised, deconvolved, and decomposed the data into a diffuse and a point-like signal estimate for the respective photon flux components.Comment: 22 pages, 8 figures, 2 tables, accepted by Astronomy & Astrophysics; refereed version, 1 figure added, results unchanged, software available at http://www.mpa-garching.mpg.de/ift/d3po

    Noisy independent component analysis of auto-correlated components

    Full text link
    We present a new method for the separation of superimposed, independent, auto-correlated components from noisy multi-channel measurement. The presented method simultaneously reconstructs and separates the components, taking all channels into account and thereby increases the effective signal-to-noise ratio considerably, allowing separations even in the high noise regime. Characteristics of the measurement instruments can be included, allowing for application in complex measurement situations. Independent posterior samples can be provided, permitting error estimates on all desired quantities. Using the concept of information field theory, the algorithm is not restricted to any dimensionality of the underlying space or discretization scheme thereof

    Stochastic determination of matrix determinants

    Full text link
    Matrix determinants play an important role in data analysis, in particular when Gaussian processes are involved. Due to currently exploding data volumes, linear operations - matrices - acting on the data are often not accessible directly but are only represented indirectly in form of a computer routine. Such a routine implements the transformation a data vector undergoes under matrix multiplication. While efficient probing routines to estimate a matrix's diagonal or trace, based solely on such computationally affordable matrix-vector multiplications, are well known and frequently used in signal inference, there is no stochastic estimate for its determinant. We introduce a probing method for the logarithm of a determinant of a linear operator. Our method rests upon a reformulation of the log-determinant by an integral representation and the transformation of the involved terms into stochastic expressions. This stochastic determinant determination enables large-size applications in Bayesian inference, in particular evidence calculations, model comparison, and posterior determination.Comment: 8 pages, 5 figure

    Reply to "Comment on `Inference with minimal Gibbs free energy in information field theory'" by Iatsenko, Stefanovska and McClintock

    Full text link
    We endorse the comment on our recent paper [En{\ss}lin and Weig, Phys. Rev. E 82, 051112 (2010)] by Iatsenko, Stefanovska and McClintock [Phys. Rev. E 85 033101 (2012)] and we try to clarify the origin of the apparent controversy on two issues. The aim of the minimal Gibbs free energy approach to provide a signal estimate is not affected by their Comment. However, if one wants to extend the method to also infer the a posteriori signal uncertainty any tempering of the posterior has to be undone at the end of the calculations, as they correctly point out. Furthermore, a distinction is made here between maximum entropy, the maximum entropy principle, and the so-called maximum entropy method in imaging, hopefully clarifying further the second issue of their Comment paper.Comment: 1 page, no figures, Reply to Comment pape
    corecore