59 research outputs found

    Cosmology in the Einstein-Electroweak Theory and Magnetic Fields

    Full text link
    In the SU(2)_{L} x U(1)_{Y} standard electroweak theory coupled with the Einstein gravity, new topological configurations naturally emerge, if the spatial section of the universe is globally a three-sphere(S^3) with a small radius. The SU(2)_L gauge fields and Higgs fields wrap the space nontrivially, residing at or near a local minimum of the potential. As the universe expands, however, the shape of the potential rapidly changes and the local minimum eventually disappears. The fields then start to roll down towards the absolute minimum. In the absence of the U(1)_Y gauge interaction the resulting space is a homogeneous and isotropic S^3, but the U(1)_Y gauge interaction necessarily induces anisotropy while preserving the homogeneity of the space. Large magnetic fields are generically produced over a substantial period of the rolling-over transition. The magnetic field configuration is characterized by the Hopf map.Comment: 32 pages, 16 figure

    Temporal subtraction CT with nonrigid image registration improves detection of bone metastases by radiologists: results of a large-scale observer study

    Get PDF
    To determine whether temporal subtraction (TS) CT obtained with non-rigid image registration improves detection of various bone metastases during serial clinical follow-up examinations by numerous radiologists. Six board-certified radiologists retrospectively scrutinized CT images for patients with history of malignancy sequentially. These radiologists selected 50 positive and 50 negative subjects with and without bone metastases, respectively. Furthermore, for each subject, they selected a pair of previous and current CT images satisfying predefined criteria by consensus. Previous images were non-rigidly transformed to match current images and subtracted from current images to automatically generate TS images. Subsequently, 18 radiologists independently interpreted the 100 CT image pairs to identify bone metastases, both without and with TS images, with each interpretation separated from the other by an interval of at least 30 days. Jackknife free-response receiver operating characteristics (JAFROC) analysis was conducted to assess observer performance. Compared with interpretation without TS images, interpretation with TS images was associated with a significantly higher mean figure of merit (0.710 vs. 0.658; JAFROC analysis, P = 0.0027). Mean sensitivity at lesion-based was significantly higher for interpretation with TS compared with that without TS (46.1% vs. 33.9%; P = 0.003). Mean false positive count per subject was also significantly higher for interpretation with TS than for that without TS (0.28 vs. 0.15; P < 0.001). At the subject-based, mean sensitivity was significantly higher for interpretation with TS images than that without TS images (73.2% vs. 65.4%; P = 0.003). There was no significant difference in mean specificity (0.93 vs. 0.95; P = 0.083). TS significantly improved overall performance in the detection of various bone metastases

    In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma

    Get PDF
    Alveolar macrophages (AMs) are crucial for maintaining normal lung function. They are abundant in lung cancer tissues, but their pathophysiological significance remains unknown. Here we show, using an orthotopic murine lung cancer model and human carcinoma samples, that AMs support cancer cell proliferation and thus contribute to unfavourable outcome. Inhibin beta A (INHBA) expression is upregulated in AMs under tumor-bearing conditions, leading to the secretion of activin A, a homodimer of INHBA. Accordingly, follistatin, an antagonist of activin A is able to inhibit lung cancer cell proliferation. Single-cell RNA sequence analysis identifies a characteristic subset of AMs specifically induced in the tumor environment that are abundant in INHBA, and distinct from INHBA-expressing AMs in normal lungs. Moreover, postnatal deletion of INHBA/activin A could limit tumor growth in experimental models. Collectively, our findings demonstrate the critical pathological role of activin A-producing AMs in tumorigenesis, and provides means to clearly distinguish them from their healthy counterparts.Taniguchi S., Matsui T., Kimura K., et al. In vivo induction of activin A-producing alveolar macrophages supports the progression of lung cell carcinoma. Nature Communications 14, 143 (2023); https://doi.org/10.1038/s41467-022-35701-8

    Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction

    Get PDF
    Cholesteatoma, which potentially results from tympanic membrane retraction, is characterized by intractable local bone erosion and subsequent hearing loss and brain abscess formation. However, the pathophysiological mechanisms underlying bone destruction remain elusive. Here, we performed a single-cell RNA sequencing analysis on human cholesteatoma samples and identify a pathogenic fibroblast subset characterized by abundant expression of inhibin βA. We demonstrate that activin A, a homodimer of inhibin βA, promotes osteoclast differentiation. Furthermore, the deletion of inhibin βA /activin A in these fibroblasts results in decreased osteoclast differentiation in a murine model of cholesteatoma. Moreover, follistatin, an antagonist of activin A, reduces osteoclastogenesis and resultant bone erosion in cholesteatoma. Collectively, these findings indicate that unique activin A-producing fibroblasts present in human cholesteatoma tissues are accountable for bone destruction via the induction of local osteoclastogenesis, suggesting a potential therapeutic target.Shimizu K., Kikuta J., Ohta Y., et al. Single-cell transcriptomics of human cholesteatoma identifies an activin A-producing osteoclastogenic fibroblast subset inducing bone destruction. Nature Communications 14, 4417 (2023); https://doi.org/10.1038/s41467-023-40094-3

    The isotope effect on impurities and bulk ion particle transport in the Large Helical Device

    Get PDF
    The isotope effect on impurities and bulk ion particle transport is investigated by using the deuterium, hydrogen, and isotope mixture plasma in the Large Helical Device (LHD). A clear isotope effect is observed in the impurity transport but not the bulk ion transport. The isotope effects on impurity transport and ion heat transport are observed as a primary and a secondary effect, respectively, in the plasma with an internal transport barrier (ITB). In the LHD, an ion ITB is always transient because the impurity hole triggered by the increase of ion temperature gradient causes the enhancement of ion heat transport and gradually terminates the ion ITB. The formation of an impurity hole becomes slower in the deuterium (D) plasma than the hydrogen (H) plasma. This primary isotope effect on impurity transport contributes the longer sustainment of the ion ITB state because the low ion thermal diffusivity can be sustained as long as the normalized carbon impurity gradient R/Ln,c, where , is above the critical value (~−5). Therefore, the longer sustainment of the ITB state in the deuterium plasma is considered to be a secondary isotope effect due to the mitigation of the impurity hole. The radial profile of H and D ion density is measured using bulk charge exchange spectroscopy inside the isotope mixture plasma. The decay time of H ion density after the H-pellet injection and the decay time of D ion density after D-pellet injection are almost identical, which demonstrates that there is no significant isotope effect on ion particle transport

    Development of Integrated Navigation Console (INC) designed for Radiation Oncology EMR/CPOE, RIS and PACS in conformity to IHE-Japan Radiation Oncology Study group Workflow

    No full text
    PURPOSEIn Japan, EMR systems become popular in the large- and middle-scaled hospitals. The workflow in the Radiation Oncology section was not studied sufficiently. This is a barrier when we implement an EMR. This situation was pointed out in the other department for example ophthalmology and dentistry departments. It is hard to customize an EMR/CPOE according to each workflow because of a huge resource and cost.The aim of this paper is to define the user-interface framework that leads us to easy customization and suitable display/ordering of examinations. This framework is expected to contribute to the medical safety.\nMETHOD AND MATERIALSWe defined actors to generate a user interface that enables to place orders. These actors gather necessary information from multiple systems (EMR, CPOE, PACS and RIS) and display to a physician. Next, radiation oncologist issues orders (laboratory examinations, radiology examinations and radiation therapy prescriptions). In ordinaryEMR/CPOEs, this process needs several cascaded screen changes. But our framework provides the highly integrated console that enable to refer results and issue orders simultaneously. In the compliant to the IHE-Japan RO workflow, we defined the 4 phases of radiation oncology workflow. At first, we analyzed the function of the beginning of the radiation. We expand the concept of the CCOW (Clinical Context Object Workgroup) used in the EUA (Enterprise User Authentication) and PSA (Patient Synchronized Application) of the IHE ITI.\nRESULTSAfter our analysis, we propose five kinds of actors; (1) Display Manager, (2) Result Tracker, (3) Order Composer, (4) Order Placer, (5) Database Updater. By using these actors, we can improve the function of EMR/CPOEs. We are easily able to reform information systems and get the safety.\nCONCLUSIONWe developed prototype of the integrated navigation console and evaluated the functions. Our method that we proposed is a powerful tool that realizes patient oriented EMR/CPOSs. By using our method, physicians are able to develop own information systems according to their clinical workflows.RSNA\u2707 93th Scientific Assembly and Annual Meetin
    corecore