403 research outputs found

    The impact of the warm outflow in the young (GPS) radio source & ULIRG PKS 1345+12 (4C 12.50)

    Get PDF
    (Abridged) We present new deep VLT/FORS optical spectra with intermediate resolution and large wavelength coverage of the GPS radio source and ULIRG PKS1345+12 (4C12.50; z=0.122), taken with the aim of investigating the impact of the nuclear activity on the circumnuclear ISM. PKS1345+12 is a powerful quasar and is also the best studied case of an emission line outflow in a ULIRG. Using the density sensitive transauroral emission lines [S II]4068,4076 and [O II]7318,7319,7330,7331, we pilot a new technique to accurately model the electron density for cases in which it is not possible to use the traditional diagnostic [S II]6716/6731, namely sources with highly broadened complex emission line profiles and/or high (Ne > 10^4 cm^-3) electron densities. We measure electron densities of Ne=2.94x10^3 cm^-3, Ne=1.47x10^4 cm^-3 and Ne=3.16x10^5 cm^-3 for the regions emitting the narrow, broad and very broad components respectively. We calculate a total mass outflow rate of 8 M_sun yr^-1. We estimate the total mass in the warm gas outflow is 8x10^5 M_sun. The total kinetic power in the warm outflow is 3.4x10^42 erg s^-1. We find that only a small fraction (0.13% of Lbol) of the available accretion power is driving the warm outflow, significantly less than currently required by the majority of quasar feedback models (~5-10\% of Lbol), but similar to recent findings by Hopkins et al. (2010) for a two-stage feedback model. The models also predict that AGN outflows will eventually remove the gas from the bulge of the host galaxy. The visible warm outflow in PKS1345+12 is not currently capable of doing so. However, it is entirely possible that much of the outflow is either obscured by a dense and dusty natal cocoon and/or in cooler or hotter phases of the ISM. This result is important not just for studies of young (GPS/CSS) radio sources, but for AGN in general.Comment: Accepted for publication in MNRAS. 11 pages, 4 figure

    Fast Outflows of Neutral Hydrogen in Radio Galaxies

    Get PDF
    AGN activity is known to drive fast outflows of gas. We report the discovery of fast outflows of neutral gas with velocities over 1000 km/s in a number of radio galaxies. In the best studied object, 3C~293, the kinematical properties of the neutral and ionised outflows are similar, indicating a common origin. Moreover, the outflow appears to be located near the radio lobes and not near the nucleus. This suggests that the interaction between the radio jet and the ISM is driving the outflow.Comment: To appear in the proceedings of IAU Symposium 222,"The Interplay among Black Holes, Stars and ISM in Galactic Nuclei", eds Storchi-Bergmann et al; 2 pages, 1 figur

    Gas outflows in radio galaxies

    Get PDF
    We present a summary of our recent results on gas outflows in radio galaxies. Fast outflows (up to 2000 km/s) have been detected both in ionized and neutral gas. The latter is particularly surprising as it shows that, despite the extremely energetic phenomena occurring near an AGN, some of the outflowing gas remains, or becomes again, neutral. These results are giving new and important insights on the physical conditions of the gaseous medium around an AGN.Comment: To appear in the proceedings of the IAU Symposium #217, Recycling Intergalactic and Interstellar Matter, eds. P.-A. Duc, J. Braine, and E. Brinks, 6 pages. The full paper with high resolution images can be downloaded from http://www.astron.nl/~morganti/Papers/outflows.ps.g

    Spatially resolved kinematics, galactic wind, and quenching of star formation in the luminous infrared galaxy IRAS F11506-3851

    Full text link
    We present a multi-wavelength integral field spectroscopic study of the low-z LIRG IRAS F11506-3851, on the basis of VIMOS and SINFONI (ESO-VLT) observations. The morphology and the 2D kinematics of the gaseous (neutral and ionized) and stellar components have been mapped using the NaD doublet, the Hα\alpha line, and the near-IR CO(2-0) and CO(3-1) bands. The kinematics of the ionized gas and the stars are dominated by rotation, with large observed velocity amplitudes and centrally peaked velocity dispersion maps. The stars lag behind the warm gas and represent a dynamically hotter system, as indicated by the observed dynamical ratios. Thanks to these IFS data we have disentangled the contribution of the stars and the ISM to the NaD feature, finding that it is dominated by the absorption of neutral gas clouds in the ISM. The neutral gas 2D kinematics shows a complex structure dominated by two components. On the one hand, the thick slowly rotating disk lags significantly compared to the ionized gas and the stars, with an irregular and off-center velocity dispersion map. On the other hand, a kpc-scale neutral gas outflow is observed along the semi-minor axis of the galaxy, as revealed by large blueshifted velocities (30-154 km/s). We derive an outflowing mass rate in neutral gas of about 48 Mw˙\dot{M_{\rm w}}/yr. Although this implies a global mass loading factor of 1.4, the 2D distribution of the ongoing SF suggests a much larger value of mass loading factor associated with the inner regions (R<<200 pc), where the current SF represents only 3 percent of the total. All together these results strongly suggest that we are witnessing (nuclear) quenching due to SF feedback in IRAS F11506-3851. However, the relatively large mass of molecular gas detected in the nuclear region via the H2 1-0 S(1) line suggests that further episodes of SF may take place again

    Large-scale HI in nearby radio galaxies: segregation in neutral gas content with radio source size

    Get PDF
    We present results of a study of neutral hydrogen (HI) in a complete sample of nearby non-cluster radio galaxies. We find that radio galaxies with large amounts of extended HI (M_HI >= 10^9 M_solar) all have a compact radio source. The host galaxies of the more extended radio sources, all of Fanaroff & Riley type-I, do not contain these amounts of HI. We discuss several possible explanations for this segregation. The large-scale HI is mainly distributed in disk- and ring-like structures with sizes up to 190 kpc and masses up to 2 x 10^10 M_solar. The formation of these structures could be related to past merger events, although in some cases it may also be consistent with a cold-accretion scenario.Comment: 4 pages, 2 figures. Accepted for publication in A&A Letters. A version with full resolution figures can be found at http://www.astro.rug.nl/~emonts/emonts_HIletter_jan07.pd

    Outflows of hot molecular gas in ultra-luminous infra-red galaxies mapped with VLT-SINFONI

    Full text link
    We present the detection and morphological characterization of hot molecular gas outflows in nearby ultra-luminous infrared galaxies, using the near-IR integral-field spectrograph SINFONI on the VLT. We detect outflows observed in the 2.12 micron H2_{2} 1-0 S(1) line for three out of four ULIRGs analyzed; IRAS 12112+0305, 14348-1447, and 22491-1808. The outflows are mapped on scales of 0.7-1.6 kpc, show typical outflow velocities of 300-500 km/s, and appear to originate from the nuclear region. The outflows comprise hot molecular gas masses of ~6-8x103^3 M(sun). Assuming a hot-to-cold molecular gas mass ratio of 6x10−5^{-5}, as found in nearby luminous IR galaxies, the total (hot+cold) molecular gas mass in these outflows is expected to be ~1x108^{8} M(sun). This translates into molecular mass outflow rates of ~30-85 M(sun)/yr, which is a factor of a few lower than the star formation rate in these ULIRGs. In addition, most of the outflowing molecular gas does not reach the escape velocity of these merger systems, which implies that the bulk of the outflowing molecular gas is re-distributed within the system and thus remains available for future star formation. The fastest H2_{2} outflow is seen in the Compton-thick AGN of IRAS 14348-1447, reaching a maximum outflow velocity of ~900 km/s. Another ULIRG, IRAS 17208-0014, shows asymmetric H2_{2} line profiles different from the outflows seen in the other three ULIRGs. We discuss several alternative explanations for its line asymmetries, including a very gentle galactic wind, internal gas dynamics, low-velocity gas outside the disk, or two superposed gas disks. We do not detect the hot molecular counterpart to the outflow previously detected in CO(2-1) in IRAS 17208-0014, but we note that our SINFONI data are not sensitive enough to detect this outflow if it has a small hot-to-cold molecular gas mass ratio of < 9x10−6^{-6}.Comment: Accepted for publication in A&A (11 pages, 10 figures
    • 

    corecore