250 research outputs found

    Lifshitz-Slyozov Scaling For Late-Stage Coarsening With An Order-Parameter-Dependent Mobility

    Full text link
    The coarsening dynamics of the Cahn-Hilliard equation with order-parameter dependent mobility, λ(ϕ)(1ϕ2)α\lambda(\phi) \propto (1-\phi^2)^\alpha, is addressed at zero temperature in the Lifshitz-Slyozov limit where the minority phase occupies a vanishingly small volume fraction. Despite the absence of bulk diffusion for α>0\alpha>0, the mean domain size is found to grow as t1/(3+α) \propto t^{1/(3+\alpha)}, due to subdiffusive transport of the order parameter through the majority phase. The domain-size distribution is determined explicitly for the physically relevant case α=1\alpha = 1.Comment: 4 pages, Revtex, no figure

    Coarsening Dynamics of a One-Dimensional Driven Cahn-Hilliard System

    Full text link
    We study the one-dimensional Cahn-Hilliard equation with an additional driving term representing, say, the effect of gravity. We find that the driving field EE has an asymmetric effect on the solution for a single stationary domain wall (or `kink'), the direction of the field determining whether the analytic solutions found by Leung [J.Stat.Phys.{\bf 61}, 345 (1990)] are unique. The dynamics of a kink-antikink pair (`bubble') is then studied. The behaviour of a bubble is dependent on the relative sizes of a characteristic length scale E1E^{-1}, where EE is the driving field, and the separation, LL, of the interfaces. For EL1EL \gg 1 the velocities of the interfaces are negligible, while in the opposite limit a travelling-wave solution is found with a velocity vE/Lv \propto E/L. For this latter case (EL1EL \ll 1) a set of reduced equations, describing the evolution of the domain lengths, is obtained for a system with a large number of interfaces, and implies a characteristic length scale growing as (Et)1/2(Et)^{1/2}. Numerical results for the domain-size distribution and structure factor confirm this behavior, and show that the system exhibits dynamical scaling from very early times.Comment: 20 pages, revtex, 10 figures, submitted to Phys. Rev.

    The Effect of Shear on Phase-Ordering Dynamics with Order-Parameter-Dependent Mobility: The Large-n Limit

    Full text link
    The effect of shear on the ordering-kinetics of a conserved order-parameter system with O(n) symmetry and order-parameter-dependent mobility \Gamma({\vec\phi}) \propto (1- {\vec\phi} ^2/n)^\alpha is studied analytically within the large-n limit. In the late stage, the structure factor becomes anisotropic and exhibits multiscaling behavior with characteristic length scales (t^{2\alpha+5}/\ln t)^{1/2(\alpha+2)} in the flow direction and (t/\ln t)^{1/2(\alpha+2)} in directions perpendicular to the flow. As in the \alpha=0 case, the structure factor in the shear-flow plane has two parallel ridges.Comment: 6 pages, 2 figure

    Off-grid solar photovoltaic systems for rural electrification and emissions mitigation in India

    Get PDF
    Over one billion people lack access to electricity and many of them in rural areas far from existing infrastructure. Off-grid systems can provide an alternative to extending the grid network and using renewable energy, for example solar photovoltaics (PV) and battery storage, can mitigate greenhouse gas emissions from electricity that would otherwise come from fossil fuel sources. This paper presents a model capable of comparing several mature and emerging PV technologies for rural electrification with diesel generation and grid extension for locations in India in terms of both the levelised cost and lifecycle emissions intensity of electricity. The levelised cost of used electricity, ranging from $0.46–1.20/kWh, and greenhouse gas emissions are highly dependent on the PV technology chosen, with battery storage contributing significantly to both metrics. The conditions under which PV and storage becomes more favourable than grid extension are calculated and hybrid systems of PV, storage and diesel generation are evaluated. Analysis of expected price evolutions suggest that the most cost-effective hybrid systems will be dominated by PV generation around 2018

    Perturbative Corrections to the Ohta-Jasnow-Kawasaki Theory of Phase-Ordering Dynamics

    Full text link
    A perturbation expansion is considered about the Ohta-Jasnow-Kawasaki theory of phase-ordering dynamics; the non-linear terms neglected in the OJK calculation are reinstated and treated as a perturbation to the linearised equation. The first order correction term to the pair correlation function is calculated in the large-d limit and found to be of order 1/(d^2).Comment: Revtex, 27 pages including 2 figures, submitted to Phys. Rev. E, references adde

    Corrections to Scaling in the Phase-Ordering Dynamics of a Vector Order Parameter

    Full text link
    Corrections to scaling, associated with deviations of the order parameter from the scaling morphology in the initial state, are studied for systems with O(n) symmetry at zero temperature in phase-ordering kinetics. Including corrections to scaling, the equal-time pair correlation function has the form C(r,t) = f_0(r/L) + L^{-omega} f_1(r/L) + ..., where L is the coarsening length scale. The correction-to-scaling exponent, omega, and the correction-to-scaling function, f_1(x), are calculated for both nonconserved and conserved order parameter systems using the approximate Gaussian closure theory of Mazenko. In general, omega is a non-trivial exponent which depends on both the dimensionality, d, of the system and the number of components, n, of the order parameter. Corrections to scaling are also calculated for the nonconserved 1-d XY model, where an exact solution is possible.Comment: REVTeX, 20 pages, 2 figure
    corecore