22 research outputs found

    European bakery products market

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:q91/20424(European) / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Sinks for nitrogen inputs in terrestrial ecosystems: a meta-analysis of15N tracer field studies

    Get PDF
    Effects of anthropogenic nitrogen (N) deposition and the ability of terrestrial ecosystems to store carbon (C) depend in part on the amount of N retained in the system and its partitioning among plant and soil pools. We conducted a meta-analysis of studies at 48 sites across four continents that used enriched 15N isotope tracers in order to synthesize information about total ecosystem N retention (i.e., total ecosystem 15N recovery in plant and soil pools) across natural systems and N partitioning among ecosystem pools. The greatest recoveries of ecosystem 15N tracer occurred in shrublands (mean, 89.5%) and wetlands (84.8%) followed by forests (74.9%) and grasslands (51.8%). In the short term (<1 week after 15N tracer application), total ecosystem 15N recovery was negatively correlated with fine-root and soil 15N natural abundance, and organic soil C and N concentration but was positively correlated with mean annual temperature and mineral soil C:N. In the longer term (3–18 months after 15N tracer application), total ecosystem 15N retention was negatively correlated with foliar natural-abundance 15N but was positively correlated with mineral soil C and N concentration and C : N, showing that plant and soil natural-abundance 15N and soil C:N are good indicators of total ecosystem N retention. Foliar N concentration was not significantly related to ecosystem 15N tracer recovery, suggesting that plant N status is not a good predictor of total ecosystem N retention. Because the largest ecosystem sinks for 15N tracer were below ground in forests, shrublands, and grasslands, we conclude that growth enhancement and potential for increased C storage in aboveground biomass from atmospheric N deposition is likely to be modest in these ecosystems. Total ecosystem 15N recovery decreased with N fertilization, with an apparent threshold fertilization rate of 46 kg N·ha−1·yr−1 above which most ecosystems showed net losses of applied 15N tracer in response to N fertilizer additio

    Variants Within TSC2 Exons 25 and 31 Are Very Unlikely to Cause Clinically Diagnosable Tuberous Sclerosis

    No full text
    Inactivating mutations in TSC1 and TSC2 cause tuberous sclerosis complex (TSC). The 2012 international consensus meeting on TSC diagnosis and management agreed that the identification of a pathogenic TSC1 or TSC2 variant establishes a diagnosis of TSC, even in the absence of clinical signs. However, exons 25 and 31 of TSC2 are subject to alternative splicing. No variants causing clinically diagnosed TSC have been reported in these exons, raising the possibility that such variants would not cause TSC. We present truncating and in-frame variants in exons 25 and 31 in three individuals unlikely to fulfil TSC diagnostic criteria and examine the importance of these exons in TSC using different approaches. Amino acid conservation analysis suggests significantly less conservation in these exons compared with the majority of TSC2 exons, and TSC2 expression data demonstrates that the majority of TSC2 transcripts lack exons 25 and/or 31 in many human adult tissues. In vitro assay of both exons shows that neither exon is essential for TSC complex function. Our evidence suggests that variants in TSC2 exons 25 or 31 are very unlikely to cause classical TSC, although a role for these exons in tissue/stage specific development cannot be excluded

    Metastasis-free survival and patterns of distant metastatic disease after PSMA-PET-guided salvage radiotherapy in recurrent or persistent prostate cancer after prostatectomy.

    No full text
    INTRODUCTION: Prostate specific membrane antigen positron-emission tomography (PSMA-PET) is increasingly used to guide salvage radiotherapy (sRT) in prostate cancer (PCa) patients with biochemical recurrence/persistence after prostatectomy. This work examines (i) metastasis-free survival (MFS) following PSMA-PET guided sRT and (ii) the metastatic patterns on PSMA-PET images after sRT. METHODS: This retrospective, multicenter (9 centers, 5 countries) study included patients referred for PSMA-PET due to recurrent/persistent disease after prostatectomy. Patients with distant metastases (DM) on PSMA-PET prior to sRT were excluded. Cox-regression was performed to assess the impact of clinical parameters on MFS. The distribution of PSMA-PET detected DM following sRT and their respective risk factors were analysed. RESULTS: All (n=815) patients received intensity-modulated RT to the prostatic fossa. In case of PET-positive pelvic lymph nodes (PLN-PET, n=275, 34%), pelvic lymphatics had been irradiated. Androgen deprivation therapy had been given in 251 (31%) patients. The median follow-up after sRT was 36 months. The 2-/4-year MFS following sRT were 93%/81%. In multivariate analysis the presence of PLN-PET was a strong predictor for MFS (HR=2.39, p&lt;0.001). Following sRT, DM were detected by PSMA-PET in 128/198 (65%) patients and two metastatic patterns were observed: 43% had DM in sub diaphragmatic paraaortic LNs (abdominal-lymphatic) whereas 45% in bones, 9% in supra diaphragmatic LNs and 6% in visceral organs (distant). Two distinct signatures with risk factors for each pattern were identified. CONCLUSION: MFS in our study is lower compared to previous studies, obviously due to the higher detection rate of DM in PSMA-PET after sRT. Thus, it remains unclear whether MFS is a surrogate endpoint for overall survival in PSMA PET-staged patients in the post sRT setting. PLN-PET may be proposed as a new surrogate parameter predictive of MFS. Analysis of recurrence patterns in PET after sRT revealed risk factor signatures for two metastatic patterns (abdominal-lymphatic and distant), which may allow individualized sRT concepts in the future
    corecore