52 research outputs found

    Limitations of Gene Duplication Models: Evolution of Modules in Protein Interaction Networks

    Get PDF
    It has been generally acknowledged that the module structure of protein interaction networks plays a crucial role with respect to the functional understanding of these networks. In this paper, we study evolutionary aspects of the module structure of protein interaction networks, which forms a mesoscopic level of description with respect to the architectural principles of networks. The purpose of this paper is to investigate limitations of well known gene duplication models by showing that these models are lacking crucial structural features present in protein interaction networks on a mesoscopic scale. This observation reveals our incomplete understanding of the structural evolution of protein networks on the module level

    Quantitative real-time RT-PCR validation of differential mRNA expression of SPARC, FADD, Fascin, COL7A1, CK4, TGM3, ECM1, PPL and EVPL in esophageal squamous cell carcinoma

    Get PDF
    BACKGROUND: Esophageal squamous cell carcinoma (ESCC) is one of the most malignant tumors and typically presents at an advanced and rapidly fatal stage. To better understand the role of genetics in the etiology and prevention of ESCC and to identify potential susceptibility genes as well as early detection markers, we previously compared tumor and matched normal tissues from ESCC patients from a high-risk area of China using cDNA expression microarrays and identified 41 differentially-expressed genes (13 over-expressed and 28 under-expressed). METHODS: In the current study, we validated and quantitated differential mRNA expression in a sample of nine of these 41 genes, including four that were over-expressed (SPARC, FADD, Fascin, COL7A1), and five that were under-expressed (CK4, TGM3, ECM1, PPL, EVPL), in 75 new ESCC patients using quantitative Real-time RT-PCR and the 2(-ΔΔCT )method to examine both tumor and matched normal tissue. In addition, we examined expression patterns for these genes by selected demographic and clinical characteristics. RESULTS: Four previously over-expressed (tumor ≥2-fold normal) genes were all increased in the majority of new ESCC patients: SPARC was increased in 71% of patients, Fascin in 70%, FADD in 63%, and COL7A1 in 57%. Five previously under-expressed (tumor ≤0.5-fold normal) genes similarly showed decreased mRNA expression in two-thirds or more of patients: CK4 was decreased in 83% of patients, TGM3 in 77%, ECM1 in 73%, and PPL and EVPL in 67% each. In subset analyses, associations with age (for COL7A1), family history (for PPL and ECM1), and alcohol use (for SPARC and Fascin) were also noted. CONCLUSION: These data indicate that these nine genes have consistent differential mRNA expression, validating results of our previous cDNA array results, and affirming their potential role in the early detection of ESCC

    The evolutionary history of lethal metastatic prostate cancer

    Get PDF
    Cancers emerge from an ongoing Darwinian evolutionary process, often leading to multiple competing subclones within a single primary tumour. This evolutionary process culminates in the formation of metastases, which is the cause of 90% of cancer-related deaths. However, despite its clinical importance, little is known about the principles governing the dissemination of cancer cells to distant organs. Although the hypothesis that each metastasis originates from a single tumour cell is generally supported, recent studies using mouse models of cancer demonstrated the existence of polyclonal seeding from and interclonal cooperation between multiple subclones. Here we sought definitive evidence for the existence of polyclonal seeding in human malignancy and to establish the clonal relationship among different metastases in the context of androgen-deprived metastatic prostate cancer. Using whole-genome sequencing, we characterized multiple metastases arising from prostate tumours in ten patients. Integrated analyses of subclonal architecture revealed the patterns of metastatic spread in unprecedented detail. Metastasis-to-metastasis spread was found to be common, either through de novo monoclonal seeding of daughter metastases or, in five cases, through the transfer of multiple tumour clones between metastatic sites. Lesions affecting tumour suppressor genes usually occur as single events, whereas mutations in genes involved in androgen receptor signalling commonly involve multiple, convergent events in different metastases. Our results elucidate in detail the complex patterns of metastatic spread and further our understanding of the development of resistance to androgen-deprivation therapy in prostate cancer.This is an ICGC Prostate Cancer study funded by: Cancer Research UK (2011-present); NIH NCI Intramural Program (2013-2014); Academy of Finland (2011-present); Cancer Society of Finland (2013-present); PELICAN Autopsy Study family members and friends (1998-2004); John and Kathe Dyson (2000); US National Cancer Institute CA92234 (2000-2005); American Cancer Society (1998-2000); Johns Hopkins University Department of Pathology (1997-2011); Women's Board of Johns Hopkins Hospital (1998); The Grove Foundation (1998); Association for the Cure of Cancer of the Prostate (1994-1998); American Foundation for Urologic Disease (1991-1994); Bob Champion Cancer Trust (2013-present); Research Foundation – Flanders (FWO) [FWO-G.0687.12] (2012-present). E.P. is a European Hematology Association Research Fellow

    Global Dynamics of the MLT

    Full text link
    • …
    corecore