1,024 research outputs found

    Two ways to Grid: the contribution of Open Grid Services Architecture (OGSA) mechanisms to service-centric and resource-centric lifecycles

    Get PDF
    Service Oriented Architectures (SOAs) support service lifecycle tasks, including Development, Deployment, Discovery and Use. We observe that there are two disparate ways to use Grid SOAs such as the Open Grid Services Architecture (OGSA) as exemplified in the Globus Toolkit (GT3/4). One is a traditional enterprise SOA use where end-user services are developed, deployed and resourced behind firewalls, for use by external consumers: a service-centric (or ‘first-order’) approach. The other supports end-user development, deployment, and resourcing of applications across organizations via the use of execution and resource management services: A Resource-centric (or ‘second-order’) approach. We analyze and compare the two approaches using a combination of empirical experiments and an architectural evaluation methodology (scenario, mechanism, and quality attributes) to reveal common and distinct strengths and weaknesses. The impact of potential improvements (which are likely to be manifested by GT4) is estimated, and opportunities for alternative architectures and technologies explored. We conclude by investigating if the two approaches can be converged or combined, and if they are compatible on shared resources

    Leveraging HTC for UK eScience with very large Condor pools: demand for transforming untapped power into results

    Get PDF
    We provide an insight into the demand from the UK eScience community for very large HighThroughput Computing resources and provide an example of such a resource in current productionuse: the 930-node eMinerals Condor pool at UCL. We demonstrate the significant benefits thisresource has provided to UK eScientists via quickly and easily realising results throughout a rangeof problem areas. We demonstrate the value added by the pool to UCL I.S infrastructure andprovide a case for the expansion of very large Condor resources within the UK eScience Gridinfrastructure. We provide examples of the technical and administrative difficulties faced whenscaling up to institutional Condor pools, and propose the introduction of a UK Condor/HTCworking group to co-ordinate the mid to long term UK eScience Condor development, deploymentand support requirements, starting with the inaugural UK Condor Week in October 2004

    Condor services for the Global Grid:interoperability between Condor and OGSA

    Get PDF
    In order for existing grid middleware to remain viable it is important to investigate their potentialfor integration with emerging grid standards and architectural schemes. The Open Grid ServicesArchitecture (OGSA), developed by the Globus Alliance and based on standard XML-based webservices technology, was the first attempt to identify the architectural components required tomigrate towards standardized global grid service delivery. This paper presents an investigation intothe integration of Condor, a widely adopted and sophisticated high-throughput computing softwarepackage, and OGSA; with the aim of bringing Condor in line with advances in Grid computing andprovide the Grid community with a mature suite of high-throughput computing job and resourcemanagement services. This report identifies mappings between elements of the OGSA and Condorinfrastructures, potential areas of conflict, and defines a set of complementary architectural optionsby which individual Condor services can be exposed as OGSA Grid services, in order to achieve aseamless integration of Condor resources in a standardized grid environment

    Object-oriented database management systems for construction of CASE environments

    Get PDF
    We argue that a fully object-oriented database management system is a very suitable basis of every modern CASE environment. We describe how the features provided by an OODBMS are exploited to build a CASE tool or environment. We discuss especially problems concerning inter-document consistency constraints and multi-user support. We finally sketch the features which are still missing in OODBMSs

    Elective Modernism and the Politics of (Bio) Ethical Expertise

    Get PDF
    In this essay I consider whether the political perspective of third wave science studies – ‘elective modernism’ – offers a suitable framework for understanding the policy-making contributions that (bio)ethical experts might make. The question arises as a consequence of the fact that I have taken inspiration from the third wave in order to develop an account of (bio)ethical expertise. I offer a précis of this work and a brief summary of elective modernism before considering their relation. The view I set out suggests that elective modernism is a political philosophy and that although its use in relation to the use of scientific expertise in political and policy-making process has implications for the role of (bio)ethical expertise it does not, in the final analysis, provide an account that is appropriate for this latter form of specialist expertise. Nevertheless, it is an informative perspective, and one that can help us make sense of the political uses of (bio)ethical expertise

    Phase-field-crystal model for liquid crystals

    Full text link
    Based on static and dynamical density functional theory, a phase-field-crystal model is derived which involves both the translational density and the orientational degree of ordering as well as a local director field. The model exhibits stable isotropic, nematic, smectic A, columnar, plastic crystalline and orientationally ordered crystalline phases. As far as the dynamics is concerned, the translational density is a conserved order parameter while the orientational ordering is non-conserved. The derived phase-field-crystal model can serve for efficient numerical investigations of various nonequilibrium situations in liquid crystals

    Hydration and the true water content of swellable clay minerals

    Get PDF
    Water affects biological, chemical and transportation processes as well as mechanical properties of soils. Thereby, clay mineral content determines the moisture balance of soils. In-situ moisture measurements depend on reliable calibration based on the true water content. Drying the soil at 105 °C is the most common procedure to determine the water content although it is known, swellable clay minerals retain hydration water up to much higher temperatures. The amplified water uptake and retention by swellable clay minerals results from hydration of interlayer cations. Thereby, the water binding mechanisms are complex due to structural heterogeneity and are determined by layer charge density and location of substitutions. While several experimental studies deal with the maximum water uptake of selected smectites and heating conditions for full dehydration a comprehensive understanding of the relation between the structure of smectites and water uptake/release is still missing. The Na-saturated smectite / water interface for the montmorillonite-beidellite series is investigated in the present work within the density functional theory (DFT). Layer charge is varied between 0.125 and 0.5 per formula unit [O10(OH)2] by substitution of Al3+ by Mg2+ in the octahedral sheet (montmorillonites) and by substitution of Si4+ by Al3+ in the tetrahedral sheets (beidellites). Starting from the water free supercells (with integer molar ratios), the number of water molecules is increased discretely. Stable hydration states (1H to 3H) do not necessarily correspond to the formation of water layers (1W to 3W) in the interlayer, which is deduced from the development of the basal spaces during hydration. With the help of ab initio thermodynamics, the energy states are related to temperature, and partial pressure of H2O and the resulting phase diagrams revealed hydration state in dependence of relative humidity (RH) as well as necessary temperatures for full dehydration to determine the true water content. Thereby it was shown that 2:1 layer silicates with a layer charge of 0.125 are swellable but reach only the 1H state even at 100% RH, but the removal of water molecules from the interlayer requires temperatures >110 °C and partial pressures of water <100 Pa. In contrast water uptake of smectites with layer charge 0.375 requires RH of >11% at room temperature, but dehydration occurs at moderate heating
    • …
    corecore