5 research outputs found

    Effects of light at night on laboratory animals and research outcomes

    Get PDF
    Light has substantial influences on the physiology and behavior of most laboratory animals. As such, lighting conditions within animal rooms are potentially significant, and often underappreciated variables within experiments. Disruption of the light/dark cycle, primarily by exposing animals to light at night (LAN), disturbs biological rhythms and has widespread physiological consequences due to mechanisms such as melatonin suppression, sympathetic stimulation, and altered circadian clock gene expression. Thus, attention to the lighting environment of laboratory animals and maintaining consistency of a light/dark cycle is imperative for study reproducibility. Light intensity as well as wavelength, photoperiod, and timing are all important variables. Although modern rodent facilities are designed to facilitate appropriate light cycling, there are simple ways to modify rooms to prevent extraneous light exposure during the dark period. Attention to lighting conditions of laboratory animals by both researchers and research care staff ensures best practices for maintaining animal welfare, as well as reproducibility of research results

    Mammary tumor and mastectomy synergistically promote neuroinflammation in a breast cancer survivor model

    Get PDF
    Understanding why breast cancer survivors are at an increased risk for cognitive and affective disorders is essential for developing targeted treatment plans and improving quality of life. Microglia priming results in chronic neuroinflammation and can contribute to neuronal degeneration and dysfunction, thereby offering a potential mechanism for altered brain function that persists after tumor removal. This study examined whether mammary tumors alter microglia and augment the inflammatory profile and behavior of mice. To test this, non-metastatic mammary tumor cells (67NR) were injected orthotopically into the mammary glands of BALB/c mice, allowed to grow for 16 days, and then the tumors were removed via mastectomy. Following a 14-day surgical recovery, the mice were challenged with lipopolysaccharide (LPS), and then central and peripheral inflammation, anxiety, and depressive-like behavior were evaluated. Here we show that major central and peripheral inflammatory markers were not altered by tumor growth nor mastectomy surgery alone. However, hippocampal mRNA expression of major proinflammatory cytokines IL-1β and TNFα was increased in tumor removal animals, persisting past surgical recovery. Nonetheless, the immune and behavioral responses following LPS administration were comparable among groups. In sum, these data demonstrate that the combination of tumor and mastectomy promotes neuroinflammation; however, immune challenge did not elucidate this inflammation as maladaptive for the host

    Paleoceanographic Insights on Recent Oxygen Minimum Zone Expansion: Lessons for Modern Oceanography

    No full text

    Bibliography

    No full text
    corecore