67 research outputs found

    CMI editorial report 2012

    Get PDF

    Leg disorders in broiler chickens : prevalence, risk factors and prevention

    Get PDF
    Broiler (meat) chickens have been subjected to intense genetic selection. In the past 50 years, broiler growth rates have increased by over 300% (from 25 g per day to 100 g per day). There is growing societal concern that many broiler chickens have impaired locomotion or are even unable to walk. Here we present the results of a comprehensive survey of commercial flocks which quantifies the risk factors for poor locomotion in broiler chickens.We assessed the walking ability of 51,000 birds, representing 4.8 million birds within 176 flocks.We also obtained information on approximately 150 different management factors associated with each flock. At a mean age of 40 days, over 27.6% of birds in our study showed poor locomotion and 3.3% were almost unable to walk. The high prevalence of poor locomotion occurred despite culling policies designed to remove severely lame birds from flocks. We show that the primary risk factors associated with impaired locomotion and poor leg health are those specifically associated with rate of growth. Factors significantly associated with high gait score included the age of the bird (older birds), visit (second visit to same flock), bird genotype, not feeding whole wheat, a shorter dark period during the day, higher stocking density at the time of assessment, no use of antibiotic, and the use of intact feed pellets. The welfare implications are profound. Worldwide approximately 261010 broilers are reared within similar husbandry systems.We identify a range of management factors that could be altered to reduce leg health problems, but implementation of these changes would be likely to reduce growth rate and production. A debate on the sustainability of current practice in the production of this important food source is required

    Constraints on Energy Intake in Fish: The Link between Diet Composition, Energy Metabolism, and Energy Intake in Rainbow Trout

    Get PDF
    The hypothesis was tested that fish fed to satiation with iso-energetic diets differing in macronutrient composition will have different digestible energy intakes (DEI) but similar total heat production. Four iso-energetic diets (2×2 factorial design) were formulated having a contrast in i) the ratio of protein to energy (P/E): high (HP/E) vs. low (LP/E) and ii) the type of non-protein energy (NPE) source: fat vs. carbohydrate which were iso-energetically exchanged. Triplicate groups (35 fish/tank) of rainbow trout were hand-fed each diet twice daily to satiation for 6 weeks under non-limiting water oxygen conditions. Feed intake (FI), DEI (kJ kg−0.8 d−1) and growth (g kg−0.8 d−1) of trout were affected by the interaction between P/E ratio and NPE source of the diet (P<0.05). Regardless of dietary P/E ratio, the inclusion of carbohydrate compared to fat as main NPE source reduced DEI and growth of trout by ∼20%. The diet-induced differences in FI and DEI show that trout did not compensate for the dietary differences in digestible energy or digestible protein contents. Further, changes in body fat store and plasma glucose did not seem to exert a homeostatic feedback control on DEI. Independent of the diet composition, heat production of trout did not differ (P>0.05). Our data suggest that the control of DEI in trout might be a function of heat production, which in turn might reflect a physiological limit related with oxidative metabolism

    Unravelling the relationship between animal growth and immune response during micro-parasitic infections

    Get PDF
    Background: Both host genetic potentials for growth and disease resistance, as well as nutrition are known to affect responses of individuals challenged with micro-parasites, but their interactive effects are difficult to predict from experimental studies alone. Methodology/Principal Findings: Here, a mathematical model is proposed to explore the hypothesis that a host's response to pathogen challenge largely depends on the interaction between a host's genetic capacities for growth or disease resistance and the nutritional environment. As might be expected, the model predicts that if nutritional availability is high, hosts with higher growth capacities will also grow faster under micro-parasitic challenge, and more resistant animals will exhibit a more effective immune response. Growth capacity has little effect on immune response and resistance capacity has little effect on achieved growth. However, the influence of host genetics on phenotypic performance changes drastically if nutrient availability is scarce. In this case achieved growth and immune response depend simultaneously on both capacities for growth and disease resistance. A higher growth capacity (achieved e.g. through genetic selection) would be detrimental for the animal's ability to cope with pathogens and greater resistance may reduce growth in the short-term. Significance: Our model can thus explain contradicting outcomes of genetic selection observed in experimental studies and provides the necessary biological background for understanding the influence of selection and/or changes in the nutritional environment on phenotypic growth and immune response. © 2009 Doeschl-Wilson et al
    corecore