5 research outputs found

    Phase Stability and Transport Mechanisms in Antiperovskite Li<sub>3</sub>OCl and Li<sub>3</sub>OBr Superionic Conductors

    No full text
    We investigate phase stability and ionic transport mechanisms in two recently discovered superionic conductors, Li<sub>3</sub>OX (X = Cl, Br), from first principles. These compounds, which have an antiperovskite crystal structure, have potential applications as solid electrolytes in Li-ion batteries. We identify a low-barrier three-atom hop mechanism involving Li interstitial dumbbells. This hop mechanism is facile within the (001) crystallographic planes of the perovskite crystal structure and is evidence for the occurrence of concerted motion, similar to ionic transport in other solid electrolytes. Our first-principles analysis of phase stability predicts that antiperovskite Li<sub>3</sub>OCl (Li<sub>3</sub>OBr) is metastable relative to Li<sub>2</sub>O and LiCl (LiBr) at room temperature. We also find that although the band gap of Li<sub>3</sub>OCl exceeds 5 eV, the metastable antiperovskite becomes susceptible to decomposition into Li<sub>2</sub>O<sub>2</sub>, LiCl and LiClO<sub>4</sub> above an applied voltage of 2.5 V, suggesting that these compounds are most suited for low-voltage Li batteries provided the formation of Li<sub>2</sub>O can be suppressed

    Tuning Ionic Transport in Memristive Devices by Graphene with Engineered Nanopores

    No full text
    Memristors, based on inherent memory effects in simple two-terminal structures, have attracted tremendous interest recently for applications ranging from nonvolatile data storage to neuromorphic computing based on non-von Neumann architectures. In a memristor, the ability to modulate and retain the state of an internal variable leads to experimentally observed resistive switching (RS) effects. Such phenomena originate from internal, microscopic ionic migration and associated electrochemical processes that modify the materials’ electrical and other physical properties. To optimize the device performance for practical applications with large-size arrays, controlling the internal ionic transport and redox reaction processes thus becomes a necessity, ideally at the atomic scale. Here we show that the RS characteristics in tantalum-oxide-based memristors can be systematically tuned by inserting a graphene film with engineered nanopores. Graphene, with its atomic thickness and excellent impermeability and chemical stability, can be effectively integrated into the device stack and can offer unprecedented capabilities for the control of ionic dynamics at the nanoscale. In this device structure, the graphene film effectively blocks ionic transport and redox reactions; thereby the oxygen vacancies required during the RS process are allowed to transport only through the engineered nanosized openings in the graphene layer, leading to effective modulation of the device performance by controlling the nanopore size in graphene. The roles of graphene as an ion-blocking layer in the device structure were further supported by transmission electron microscopy, energy-dispersive X-ray spectroscopy, and atomistic simulations based on first-principles calculations

    Electronic and Optical Properties of Two-Dimensional GaN from First-Principles

    No full text
    Gallium nitride (GaN) is an important commercial semiconductor for solid-state lighting applications. Atomically thin GaN, a recently synthesized two-dimensional material, is of particular interest because the extreme quantum confinement enables additional control of its light-emitting properties. We performed first-principles calculations based on density functional and many-body perturbation theory to investigate the electronic, optical, and excitonic properties of monolayer and bilayer two-dimensional (2D) GaN as a function of strain. Our results demonstrate that light emission from monolayer 2D GaN is blueshifted into the deep ultraviolet range, which is promising for sterilization and water-purification applications. Light emission from bilayer 2D GaN occurs at a similar wavelength to its bulk counterpart due to the cancellation of the effect of quantum confinement on the optical gap by the quantum-confined Stark shift. Polarized light emission at room temperature is possible via uniaxial in-plane strain, which is desirable for energy-efficient display applications. We compare the electronic and optical properties of freestanding two-dimensional GaN to atomically thin GaN wells embedded within AlN barriers in order to understand how the functional properties are influenced by the presence of barriers. Our results provide microscopic understanding of the electronic and optical characteristics of GaN at the few-layer regime

    Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub>: A Lillianite Homologue with Promising Thermoelectric Properties

    No full text
    Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> crystallizes in the monoclinic space group <i>C</i>2/<i>m</i> (No. 12) with <i>a</i> = 13.991(3) Å, <i>b</i> = 4.262(2) Å, <i>c</i> = 23.432(5) Å, and β = 98.3(3)° at 300 K. In its three-dimensional structure, two NaCl-type layers A and B with respective thicknesses <i>N</i><sub>1</sub> = 5 and <i>N</i><sub>2</sub> = 4 [<i>N</i> = number of edge-sharing (Pb/Bi)­Se<sub>6</sub> octahedra along the central diagonal] are arranged along the <i>c</i> axis in such a way that the bridging monocapped trigonal prisms, PbSe<sub>7</sub>, are located on a pseudomirror plane parallel to (001). This complex atomic-scale structure results in a remarkably low thermal conductivity (∼0.33 W m<sup>–1</sup> K<sup>–1</sup> at 300 K). Electronic structure calculations and diffuse-reflectance measurements indicate that Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> is a narrow-gap semiconductor with an indirect band gap of 0.23 eV. Multiple peaks and valleys were observed near the band edges, suggesting that Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> is a promising compound for both n- and p-type doping. Electronic-transport data on the as-grown material reveal an n-type degenerate semiconducting behavior with a large thermopower (∼−160 μV K<sup>–1</sup> at 300 K) and a relatively low electrical resistivity. The inherently low thermal conductivity of Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> and its tunable electronic properties point to a high thermoelectric figure of merit for properly optimized samples

    Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub>: A Lillianite Homologue with Promising Thermoelectric Properties

    No full text
    Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> crystallizes in the monoclinic space group <i>C</i>2/<i>m</i> (No. 12) with <i>a</i> = 13.991(3) Å, <i>b</i> = 4.262(2) Å, <i>c</i> = 23.432(5) Å, and β = 98.3(3)° at 300 K. In its three-dimensional structure, two NaCl-type layers A and B with respective thicknesses <i>N</i><sub>1</sub> = 5 and <i>N</i><sub>2</sub> = 4 [<i>N</i> = number of edge-sharing (Pb/Bi)­Se<sub>6</sub> octahedra along the central diagonal] are arranged along the <i>c</i> axis in such a way that the bridging monocapped trigonal prisms, PbSe<sub>7</sub>, are located on a pseudomirror plane parallel to (001). This complex atomic-scale structure results in a remarkably low thermal conductivity (∼0.33 W m<sup>–1</sup> K<sup>–1</sup> at 300 K). Electronic structure calculations and diffuse-reflectance measurements indicate that Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> is a narrow-gap semiconductor with an indirect band gap of 0.23 eV. Multiple peaks and valleys were observed near the band edges, suggesting that Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> is a promising compound for both n- and p-type doping. Electronic-transport data on the as-grown material reveal an n-type degenerate semiconducting behavior with a large thermopower (∼−160 μV K<sup>–1</sup> at 300 K) and a relatively low electrical resistivity. The inherently low thermal conductivity of Pb<sub>7</sub>Bi<sub>4</sub>Se<sub>13</sub> and its tunable electronic properties point to a high thermoelectric figure of merit for properly optimized samples
    corecore