3 research outputs found

    Association of triglyceride-glucose index with clinical outcomes in patients with acute ischemic stroke receiving intravenous thrombolysis.

    Get PDF
    Intravenous tissue plasminogen activator (tPA) remains the cornerstone of recanalization therapy for acute ischemic stroke (AIS), albeit with varying degrees of response. The triglyceride-glucose (TyG) index is a novel marker of insulin resistance, but association with outcomes among AIS patients who have received tPA has not been well elucidated. We studied 698 patients with AIS who received tPA from 2006 to 2018 in a comprehensive stroke centre. TyG index was calculated using the formula: ln[fasting triglycerides (mg/dL) × fasting glucose (mg/dL)/2]. TyG index was significantly lower in patients that survived at 90-days than those who died (8.61 [Interquartile Range: 8.27-8.99] vs 8.76 [interquartile range: 8.39-9.40], p = 0.007). In multivariate analysis, TyG index was significantly associated with 90-day mortality (OR: 2.12, 95% CI: 1.39-3.23, p = 0.001), poor functional outcome (OR: 1.41 95% CI: 1.05-1.90, p = 0.022), and negatively associated with early neurological improvement (ENI) (OR: 0.68, 95% CI: 0.52-0.89, p = 0.004). There was no association between TyG index and symptomatic intracranial hemorrhage. 'High TyG' (defined by TyG index ≥ 9.15) was associated with mortality, poor functional outcomes and no ENI. In conclusion, the TyG index, a measure of insulin resistance, was significantly associated with poorer clinical outcomes in AIS patients who received tPA

    Machine Learning Modeling to Predict Atrial Fibrillation Detection in Embolic Stroke of Undetermined Source Patients.

    No full text
    BackgroundIn patients with embolic stroke of undetermined source (ESUS), occult atrial fibrillation (AF) has been implicated as a key source of cardioembolism. However, only a minority acquire implantable cardiac loop recorders (ILRs) to detect occult paroxysmal AF, partly due to financial cost and procedural inconvenience. Without the initiation of appropriate anticoagulation, these patients are at risk of increased ischemic stroke recurrence. Hence, cost-effective and accurate methods of predicting AF in ESUS patients are highly sought after.ObjectiveWe aimed to incorporate clinical and echocardiography data into machine learning (ML) algorithms for AF prediction on ILRs in ESUS.MethodsThis was a single-center cohort study that included 157 consecutive patients diagnosed with ESUS from October 2014 to October 2017 who had ILR evaluation. We developed four ML models, with hyperparameters tuned, to predict AF detection on an ILR.ResultsThe median age of the cohort was 67 (IQR 59-74) years old and the median monitoring duration was 1051 (IQR 478-1287) days. Of the 157 patients, 32 (20.4%) had occult AF detected on the ILR. Support vector machine predicted for AF with a 95% confidence interval area under the receiver operating characteristic curve (AUC) of 0.736-0.737, multilayer perceptron with an AUC of 0.697-0.708, XGBoost with an AUC of 0.697-0.697, and random forest with an AUC of 0.663-0.674. ML feature importance found that age, HDL-C, and admitting heart rate were important non-echocardiography variables, while peak mitral A-wave velocity and left atrial volume were important echocardiography parameters aiding this prediction.ConclusionMachine learning modeling incorporating clinical and echocardiographic variables predicted AF in ESUS patients with moderate accuracy

    Clinical phenotypes and outcomes in children with multisystem inflammatory syndrome across SARS-CoV-2 variant eras: a multinational study from the 4CE consortiumResearch in context

    No full text
    Summary: Background: Multisystem inflammatory syndrome in children (MIS-C) is a severe complication of SARS-CoV-2 infection. It remains unclear how MIS-C phenotypes vary across SARS-CoV-2 variants. We aimed to investigate clinical characteristics and outcomes of MIS-C across SARS-CoV-2 eras. Methods: We performed a multicentre observational retrospective study including seven paediatric hospitals in four countries (France, Spain, U.K., and U.S.). All consecutive confirmed patients with MIS-C hospitalised between February 1st, 2020, and May 31st, 2022, were included. Electronic Health Records (EHR) data were used to calculate pooled risk differences (RD) and effect sizes (ES) at site level, using Alpha as reference. Meta-analysis was used to pool data across sites. Findings: Of 598 patients with MIS-C (61% male, 39% female; mean age 9.7 years [SD 4.5]), 383 (64%) were admitted in the Alpha era, 111 (19%) in the Delta era, and 104 (17%) in the Omicron era. Compared with patients admitted in the Alpha era, those admitted in the Delta era were younger (ES −1.18 years [95% CI −2.05, −0.32]), had fewer respiratory symptoms (RD −0.15 [95% CI −0.33, −0.04]), less frequent non-cardiogenic shock or systemic inflammatory response syndrome (SIRS) (RD −0.35 [95% CI −0.64, −0.07]), lower lymphocyte count (ES −0.16 × 109/uL [95% CI −0.30, −0.01]), lower C-reactive protein (ES −28.5 mg/L [95% CI −46.3, −10.7]), and lower troponin (ES −0.14 ng/mL [95% CI −0.26, −0.03]). Patients admitted in the Omicron versus Alpha eras were younger (ES −1.6 years [95% CI −2.5, −0.8]), had less frequent SIRS (RD −0.18 [95% CI −0.30, −0.05]), lower lymphocyte count (ES −0.39 × 109/uL [95% CI −0.52, −0.25]), lower troponin (ES −0.16 ng/mL [95% CI −0.30, −0.01]) and less frequently received anticoagulation therapy (RD −0.19 [95% CI −0.37, −0.04]). Length of hospitalization was shorter in the Delta versus Alpha eras (−1.3 days [95% CI −2.3, −0.4]). Interpretation: Our study suggested that MIS-C clinical phenotypes varied across SARS-CoV-2 eras, with patients in Delta and Omicron eras being younger and less sick. EHR data can be effectively leveraged to identify rare complications of pandemic diseases and their variation over time. Funding: None
    corecore