1 research outputs found

    Conceptual Design of a Novel CO<sub>2</sub> Capture Process Based on Precipitating Amino Acid Solvents

    No full text
    Amino acid salt based solvents can be used for CO<sub>2</sub> removal from flue gas in a conventional absorption–thermal desorption process. Recently, new process concepts have been developed based on the precipitation of the amino acid zwitterion species during the absorption of CO<sub>2</sub>. In this work, a new concept is introduced which requires the precipitation of the pure amino acid species and the partial recycle of the remaining supernatant to the absorption column. This induces a shift in the pH of the rich solution treated in the stripper column that has substantial energy benefits during CO<sub>2</sub> desorption. To describe and evaluate this concept, this work provides the conceptual design of a new process (DECAB Plus) based on a 4 M aqueous solution of potassium taurate. The design is supported by experimental data such as amino acid speciation, vapor–liquid equilibria of CO<sub>2</sub> on potassium taurate solutions, and solid–liquid partition. The same conceptual design method has been used to evaluate a baseline case based on 5 M MEA. After thorough evaluation of the significant variables, the new DECAB Plus process can lower the specific reboiler energy for solvent regeneration by 35% compared to the MEA baseline. The specific reboiler energy is reduced from 3.7 GJ/tCO<sub>2</sub>, which corresponds to the MEA baseline, to 2.4 GJ/tCO<sub>2</sub>, which corresponds to the DECAB Plus process described in this work, excluding the low-grade energy required to redissolve the precipitates formed during absorption. Although this low-grade energy will eventually reduce the overall energy savings, the evaluation of DECAB Plus has indicated the potential of this concept for postcombustion CO<sub>2</sub> capture
    corecore