12 research outputs found
TRPM2 confers susceptibility to social stress but is essential for behavioral flexibility
Transient receptor potential melastatin 2 (TRPM2) is a Ca²⁺-permeable, nonselective cation channel and a member of the TRP channel superfamily that acts as a sensor of intracellular redox states. TRPM2 is widely distributed in many tissues and highly expressed in the brain, but the physiological roles of TRPM2 in the central nervous system remain unclear. In this study, TRPM2-deficient mice were examined in a series of behavioral tests. TRPM2-deficient mice did not significantly differ from wild-type littermates in muscle strength, light/dark transition test, rotarod, elevated plus maze, social interaction, prepulse inhibition, Y-maze, forced swim test, cued and contextual fear conditioning, and tail suspension test. In the Barnes circular maze, TRPM2-deficient mice learned the fixed escape box position at similar extent to wild-type littermates, suggesting normal reference memory. However, performance of the first reversal trial and probe test were significantly impaired in TRPM2-deficient mice. In the T-maze delayed alternation task, TRPM2 deficiency significantly reduced choice accuracy. These results indicate that TRPM2-deficient mice shows behavioral inflexibility. Meanwhile, social avoidance induced by repeated social defeat stress was significantly attenuated in TRPM2-deficient mice, suggesting that TRPM2 deficiency confers stress resiliency. Our findings indicate that TRPM2 plays an essential role in maintaining behavioral flexibility but it increases susceptibility to stress
Urinary neutrophil gelatinase-associated lipocalin: a useful biomarker for tacrolimus-induced acute kidney injury in liver transplant patients.
Tacrolimus is widely used as an immunosuppressant in liver transplantation, and tacrolimus-induced acute kidney injury (AKI) is a serious complication of liver transplantation. For early detection of AKI, various urinary biomarkers such as monocyte chemotactic protein-1, liver-type fatty acid-binding protein, interleukin-18, osteopontin, cystatin C, clusterin and neutrophil gelatinase-associated lipocalin (NGAL) have been identified. Here, we attempt to identify urinary biomarkers for the early detection of tacrolimus-induced AKI in liver transplant patients. Urine samples were collected from 31 patients after living-donor liver transplantation (LDLT). Twenty recipients developed tacrolimus-induced AKI. After the initiation of tacrolimus therapy, urine samples were collected on postoperative days 7, 14, and 21. In patients who experienced AKI during postoperative day 21, additional spot urine samples were collected on postoperative days 28, 35, 42, 49, and 58. The 8 healthy volunteers, whose renal and liver functions were normal, were asked to collect their blood and spot urine samples. The urinary levels of NGAL, monocyte chemotactic protein-1 and liver-type fatty acid-binding protein were significantly higher in patients with AKI than in those without, while those of interleukin-18, osteopontin, cystatin C and clusterin did not differ between the 2 groups. The area under the receiver operating characteristics curve of urinary NGAL was 0.876 (95% confidence interval, 0.800-0.951; P<0.0001), which was better than those of the other six urinary biomarkers. In addition, the urinary levels of NGAL at postoperative day 1 (p = 0.0446) and day 7 (p = 0.0006) can be a good predictive marker for tacrolimus-induced AKI within next 6 days, respectively. In conclusion, urinary NGAL is a sensitive biomarker for tacrolimus-induced AKI, and may help predict renal event caused by tacrolimus therapy in liver transplant patients
Characteristics of the urinary biomarkers.
<p><b>Abbreviations:</b> AUC, area under the curve; CI, confidence interval; IL-18, interleukin-18; L-FABP, liver-type fatty acid-binding protein; MCP-1, monocyte chemotactic protein-1; NGAL, neutrophil gelatinase-associated lipocalin.</p><p>Characteristics of the urinary biomarkers.</p
Patient characteristics.
<p>NOTE: The results are given as mean ± standard deviation. Statistical analysis was performed using the Mann-Whitney U test and Kruskal-Wallis test.</p><p><b>Abbreviations:</b> BUN, blood urea nitrogen; eGFR, estimated glomerular filtration rate; MELD, Model for End-stage Liver Disease; Scr, serum creatinine; POD, postoperative day.</p><p>Patient characteristics.</p
Time-dependent changes tacrolimus concentration, Scr levels and urinary NGAL concentrations.
<p>The average ± SD values of tacrolimus trough concentrations, Scr levels and urinary NGAL concentrations in the liver transplant patients who experienced AKI during the period of postoperative day 1–5 (B, F, J), during the postoperative day 6–10 (C, G, K), after the postoperative day 11 (D, H, L) and AKI-free patients (A, E, I) are summarized. The cut-off values of urinary NGAL calculated from ROC analysis were 61.0 ng/mg creatinine (red dotted line).</p
Comparison of the urinary levels of NGAL (A), MCP-1 (B), L-FABP (C), IL-18 (D), osteopontin (E), cystatin C (F), and clusterin (G) between AKI-free group (37 measurements of 11 subjects) and AKI group (40 measurements of 20 subjects).
<p>Data were from urinary samples in the post-transplant tacrolimus therapy. Data were normalized to urinary creatinine concentration and plotted on a logarithmic Y axis. Statistical analyses were performed using the Mann-Whitney U test and Kruskal-Wallis test. *P<0.05, ***P<0.001. NGAL, neutrophil gelatinase-associated lipocalin; MCP-1, monocyte chemotactic protein-1; L-FABP, liver-type fatty acid-binding protein; IL-18, interleukin-18, N.D., not detected.</p
Urinary levels of NGAL in AKI and AKI-free patients.
<p>The cut-off values of urinary NGAL at postoperative day 1 (A, dotted line: 12.8 ng/mg creatinine) and postoperative day 7 (B, dotted line: 62.6 ng/mg creatinine) were evaluated using ROC curve analysis. Although the urinary level of NGAL in the AKI group was similar to that of the AKI-free group at postoperative day 1 (<b>A</b>), that at postoperative day 7 was markedly higher in the AKI group than in the AKI-free group (<b>B</b>). The probability of AKI developing between postoperative days 1 and 7 (<b>C</b>) and between postoperative days 8 and 14 (<b>D</b>) was examined using Kaplan-Meier analysis and a log-rank test. Statistical analysis was performed using the Mann-Whitney U test. **P<0.01. NGAL, neutrophil gelatinase-associated lipocalin.</p
Diagnostic algorithm of tacrolimus-induced AKI in the patients after liver transplantation.
<p>Between August 2010 and July 2013, 93 patients were enrolled with the written informed consent. Nine patients with perioperative renal impairment before the administration of tacrolimus-based posttransplant immunosuppressive treatment and patients with any renal replacement therapy were excluded. Patients with renal impairment by some other causes including septic ischemia, antibiotics and hepatorenal syndrome were also excluded from this study. In addition, the patients of renal impairment with low tacrolimus levels, whose Scr levels were not changed even by the decrease of tacrolimus dosage, were also excluded indicating other causes-derived renal impairment such as tubular necrosis post-surgery. Among 24 patients with normal kidney function, 13 patients with post-transplant infectious disease, surgery for hemostasis, post-surgical diabetes mellitus and acute rejection episode were excluded for the temporal discontinuation of tacrolimus administration. Finally, the clinical data of the 11 control patients and 20 patients with tacrolimus-induced AKI were used.</p
Comparison of the urinary levels of NGAL (A), MCP-1 (B), L-FABP (C), IL-18 (D), osteopontin (E), cystatin C (F), and clusterin (G) among healthy volunteers (8 measurements of 8 subjects), AKI-free group (11 measurements of 11 subjects) and AKI group (20 measurements of 20 subjects).
<p>Data were from urinary samples on postoperative day 1 immediately before the administration of tacrolimus in liver transplant patients (AKI-free group and AKI group). Data were normalized to urinary creatinine concentration and plotted on a logarithmic Y axis. Statistical analyses were performed using the Mann-Whitney U test and Kruskal-Wallis test. *<0.05, **P<0.01, ***P<0.001. NGAL, neutrophil gelatinase-associated lipocalin; MCP-1, monocyte chemotactic protein-1; L-FABP, liver-type fatty acid-binding protein; IL-18, interleukin-18, N.D., not detected.</p