1,180 research outputs found

    Design Principles for Microfluidic Biomedical Diagnostics in Space

    Get PDF

    An examination of anticipated g-jitter on Space Station and its effects on materials processes

    Get PDF
    This study is concerned with the effects of g-jitter, the residual acceleration aboard spacecraft, on selected classes of materials processes. In particular, the anticipated acceleration environment aboard Space Station Freedom (SSF) and its potential effects are analyzed, but the topic is covered with a sufficient level of generality as to apply to other processes and to other vehicles as well. Some of the key findings of this study include: The present acceleration specifications for SSF are inadequate to assure a quality level low-g environment. The local g vector orientation is an extremely sensitive parameter for certain key processes, but can not be controlled to within the desired tolerance. Therefore, less emphasis should be placed upon achieving a tight control of SSF attitude, but more emphasis should be focused on reducing the overall level of the g-jitter magnitude. Melt-based crystal growth may not be successfully processed in the relatively noisy environment of a large inhabited space structure. Growth from vapor or from solution appears more favorable. A smaller space structure and/or a free flyer can provide better alternatives in terms of g-jitter considerations. A high priority (including budgetary) should be given to coordinated efforts among researchers, SSF designers, and equipment contractors, to develop practical experiment-specific sensitivity requirements. Combined focused numerical simulations and experiments with well-resolved acceleration measurements should be vigorously pursued for developing reliable experiment-specific sensitivity data. Appendices provide an extensive cross-referenced bibliography, a discussion of the merits offered by g-jitter analysis techniques, as well as definitions of relevant nondimensional quantities and a brief description of available accelerometry hardware

    Thoracic Pressure Does Not Impact CSF Pressure via Compartment Compliance

    Get PDF
    Space acquired neuro-ocular syndrome (SANS) remains a difficult risk to characterize due to the complex multi-factorial etiology related to physiological responses to the spaceflight environment. Fluid shift and the resultant change on the Cardiovascular (CV) and cerebral spinal fluid systems (CSF) in the absence of gravity continue to be considered a contributing factor to the progression of SANS. In this study, we utilize a computational model of the CSF and CV interface to establish the sensitivity that intracranial pressure, and subsequently the optic nerve sheath pressure, exhibits due to variations in thoracic pressure, assuming the cranial perfusion pressure, i.e. mean arterial pressure (MAP) to central venous pressure (CVP), is known. Methods: The GRC Cross cutting computational modeling project created as model of the CSF and CV interaction within the cranial vault by extending the work of Stevens et al. [1] by modifying the representative anatomy to include a separate venous sinus, jugular veins, secondary veins and extra jugular pathways [2-3] to more adequately represent the vascular drainage pathways from the cranial vault (Figure 1). Assuming the MAP, CVP and thoracic pressure are known, we initiated this enhanced computational model assuming a supine positon and utilized a linear ramp to vary the thoracic pressure from the assumed supine state to the target pressure corresponding to set MAP and CVP values. The model generates the time based CSF pressure values (Figure2). Results and Conclusions: Following this analysis, CSF pressure shows significant independence from thoracic pressure changes (16 mmHg in thoracic pressure produces < 1mmHg change in CSF pressure), being mostly dependent on perfusion pressure. Similarly fluid redistribution is not predicted to be impacted over a level of 1mL. We note that this simulation represents an acute changes (order of 10's of minutes) and does not represent the long term effects

    Portable Diagnostics Technology Assessment for Space Missions

    Get PDF
    The changes in the scope of NASA s mission in the coming decade are profound and demand nimble, yet insightful, responses. On-board clinical and environmental diagnostics must be available for both mid-term lunar and long-term Mars exploration missions in an environment marked by scarce resources. Miniaturization has become an obvious focus. Despite solid achievements in lab-based devices, broad-based, robust tools for application in the field are not yet on the market. The confluence of rapid, wide-ranging technology evolution and internal planning needs are the impetus behind this work. This report presents an analytical tool for the ongoing evaluation of promising technology platforms based on mission- and application-specific attributes. It is not meant to assess specific devices, but rather to provide objective guidelines for a rational down-select of general categories of technology platforms. In this study, we have employed our expertise in the microgravity operation of fluidic devices, laboratory diagnostics for space applications, and terrestrial research in biochip development. A rating of the current state of technology development is presented using the present tool. Two mission scenarios are also investigated: a 30-day lunar mission using proven, tested technology in 5 years; and a 2- to 3-year mission to Mars in 10 to 15 years

    Design Study Conducted of a Stirred and Perfused Specimen Chamber for Culturing Suspended Cells on the International Space Station

    Get PDF
    A tightly knit numerical/experimental collaboration among the NASA Ames Research Center, NASA Glenn Research Center, and Payload Systems, Inc., was formed to analyze cell culturing systems for the International Space Station. The Cell Culture Unit is a facility scheduled for deployment on the space station by the Cell Culture Unit team at Ames. The facility houses multiple cell specimen chambers (CSCs), all of which have inlets and outlets to allow for replenishment of nutrients and for waste removal. For improved uniformity of nutrient and waste concentrations, each chamber has a pair of counterrotating stir bars as well. Although the CSC can be used to grow a wide variety of organic cells, the current study uses yeast as a model cell. Previous work identified groundbased protocols for perfusion and stirring to achieve yeast growth within the CSC that is comparable to that for yeast cultures grown in a shaken Ehrlenmeyer flask

    Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    Get PDF
    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector

    Risk Assessment of Bone Fracture During Space Exploration Missions to the Moon and Mars

    Get PDF
    The possibility of a traumatic bone fracture in space is a concern due to the observed decrease in astronaut bone mineral density (BMD) during spaceflight and because of the physical demands of the mission. The Bone Fracture Risk Module (BFxRM) was developed to quantify the probability of fracture at the femoral neck and lumbar spine during space exploration missions. The BFxRM is scenario-based, providing predictions for specific activities or events during a particular space mission. The key elements of the BFxRM are the mission parameters, the biomechanical loading models, the bone loss and fracture models and the incidence rate of the activity or event. Uncertainties in the model parameters arise due to variations within the population and unknowns associated with the effects of the space environment. Consequently, parameter distributions were used in Monte Carlo simulations to obtain an estimate of fracture probability under real mission scenarios. The model predicts an increase in the probability of fracture as the mission length increases and fracture is more likely in the higher gravitational field of Mars than on the moon. The resulting probability predictions and sensitivity analyses of the BFxRM can be used as an engineering tool for mission operation and resource planning in order to mitigate the risk of bone fracture in space

    An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries

    Full text link
    Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12− produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.Ein einfacher und doch vielfĂ€ltiger Magnesiummonocarboran(MMC)‐basierter Elektrolyt als bemerkenswertes halogenfreies und umweltschonendes System ist mit Mg‐Metall kompatibel und weist die bislang höchste anodische StabilitĂ€t auf. Wegen seiner nichtkorrodierenden Art ermöglicht der MMC‐Elektrolyt die Untersuchung von Hochspannungskathoden in einer Knopfzelle – ein wichtiger Schritt hin zu praktisch einsetzbaren wiederaufladbaren Mg‐Batterien.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111952/1/8011_ftp.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111952/2/ange_201412202_sm_miscellaneous_information.pd

    An Efficient Halogen‐Free Electrolyte for Use in Rechargeable Magnesium Batteries

    Full text link
    Unlocking the full potential of rechargeable magnesium batteries has been partially hindered by the reliance on chloride‐based complex systems. Despite the high anodic stability of these electrolytes, they are corrosive toward metallic battery components, which reduce their practical electrochemical window. Following on our new design concept involving boron cluster anions, monocarborane CB11H12− produced the first halogen‐free, simple‐type Mg salt that is compatible with Mg metal and displays an oxidative stability surpassing that of ether solvents. Owing to its inertness and non‐corrosive nature, the Mg(CB11H12)2/tetraglyme (MMC/G4) electrolyte system permits standardized methods of high‐voltage cathode testing that uses a typical coin cell. This achievement is a turning point in the research and development of Mg electrolytes that has deep implications on realizing practical rechargeable Mg batteries.A simple yet multifaceted magnesium monocarborane (MMC) based electrolyte was prepared. This remarkable halogen‐free and benign system is compatible with Mg metal and displays the highest anodic stability reported to date. The non‐corrosive nature of the MMC electrolyte enabled the examination of high‐voltage cathodes in a coin cell, which is a critical step forward in realizing practical rechargeable Mg batteries.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/111923/1/anie_201412202_sm_miscellaneous_information.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/111923/2/7900_ftp.pd
    • 

    corecore