13 research outputs found

    Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg lymphedema

    No full text
    Secondary lymphedema in humans is a common consequence of axillary lymph node dissection (ALND) to treat breast cancer. It is commonly hypothesized that lymphatic growth is required to increase fluid drainage and ameliorate lymphedema. Although there is a pronounced alteration in the balance of interstitial forces regulating fluid transport that sustains the chronic form of lymphedema, it is presently unknown whether changes occur to the balance of interstitial forces during acute lymphedema that may play a role in the recovery of fluid drainage. Here, we compared the relative importance of lymphangiogenesis of lymphatic vessels and interstitial flows for restoring fluid drainage and resolving acute lymphedema in the mouse foreleg after ALND. We found that removal of the axillary lymph nodes reduced lymph drainage in the foreleg at days 0 and 5 postsurgery, with fluid tracer spreading interstitially through subcutaneous tissues. Interstitial fluid drainage returned to normal by day 10, whereas functional regrowth of lymphatic vessels was first detected by indocyanine green fluorescence lymphography at day 15, demonstrating that the recovery of interstitial fluid drainage preceded the regrowth of lymphatic vessels. This was confirmed by the administration of VEGF receptor-3-neutralizing antibodies, which completely blocks lymphatic regrowth. It was found that the recovery of interstitial fluid drainage and the natural resolution of acute lymphedema produced by ALND were not hindered by VEGF receptor-3 neutral-ization, demonstrating that interstitial fluid drainage recovery and the resolution of acute lymphedema are lymphangiogenesis independent. The data highlight the central role of the interstitial environment in adapting to lymphatic injury to increase fluid drainage. © 2012 the American Physiological Society

    Effects of freezing on membranes and proteins in LNCaP prostate tumor cells

    No full text
    Fourier transform infrared spectroscopy (FTIR) and cryomicroscopy were used to define the process of cellular injury during freezing in LNCaP prostate tumor cells, at the molecular level. Cell pellets were monitored during cooling at 2 °C/min while the ice nucleation temperature was varied between - 3 and - 10 °C. We show that the cells tend to dehydrate precipitously after nucleation unless intracellular ice formation occurs. The predicted incidence of intracellular ice formation rapidly increases at ice nucleation temperatures below - 4 °C and cell survival exhibits an optimum at a nucleation temperature of - 6 °C. The ice nucleation temperature was found to have a great effect on the membrane phase behavior of the cells. The onset of the liquid crystalline to gel phase transition coincided with the ice nucleation temperature. In addition, nucleation at - 3 °C resulted in a much more co-operative phase transition and a concomitantly lower residual conformational disorder of the membranes in the frozen state compared to samples that nucleated at - 10 °C. These observations were explained by the effect of the nucleation temperature on the extent of cellular dehydration and intracellular ice formation. Amide-III band analysis revealed that proteins are relatively stable during freezing and that heat-induced protein denaturation coincides with an abrupt decrease in α-helical structures and a concomitant increase in ÎČ-sheet structures starting at an onset temperature of approximately 48 °C. © 2007 Elsevier B.V. All rights reserved

    Functional recovery of fluid drainage precedes lymphangiogenesis in acute murine foreleg lymphedema

    No full text
    Secondary lymphedema in humans is a common consequence of axillary lymph node dissection (ALND) to treat breast cancer. It is commonly hypothesized that lymphatic growth is required to increase fluid drainage and ameliorate lymphedema. Although there is a pronounced alteration in the balance of interstitial forces regulating fluid transport that sustains the chronic form of lymphedema, it is presently unknown whether changes occur to the balance of interstitial forces during acute lymphedema that may play a role in the recovery of fluid drainage. Here, we compared the relative importance of lymphangiogenesis of lymphatic vessels and interstitial flows for restoring fluid drainage and resolving acute lymphedema in the mouse foreleg after ALND. We found that removal of the axillary lymph nodes reduced lymph drainage in the foreleg at days 0 and 5 postsurgery, with fluid tracer spreading interstitially through subcutaneous tissues. Interstitial fluid drainage returned to normal by day 10, whereas functional regrowth of lymphatic vessels was first detected by indocyanine green fluorescence lymphography at day 15, demonstrating that the recovery of interstitial fluid drainage preceded the regrowth of lymphatic vessels. This was confirmed by the administration of VEGF receptor-3-neutralizing antibodies, which completely blocks lymphatic regrowth. It was found that the recovery of interstitial fluid drainage and the natural resolution of acute lymphedema produced by ALND were not hindered by VEGF receptor-3 neutralization, demonstrating that interstitial fluid drainage recovery and the resolution of acute lymphedema are lymphangiogenesis independent. The data highlight the central role of the interstitial environment in adapting to lymphatic injury to increase fluid drainage

    The resolution of lymphedema by interstitial flow in the mouse tail skin

    No full text
    Lymphangiogenesis is considered a promising approach for increasing fluid drainage during secondary lymphedema. However, organization of lymphatics into functional capillaries may be dependent upon interstitial flow (IF). The present study was undertaken to determine the importance of lymphangiogenesis for lymphedema resolution. We created a lymphatic obstruction that produces lymphedema in mouse tail skin. The relatively scar-free skin regeneration that occurred across the obstruction allowed the progression of lymphangiogenesis to be observed and compared with the evolution of lymphedema. The role of vascular endothelial growth factor-C (VEGF-C)/VEGF receptor (VEGFR)-3 signaling in lymphedema resolution was investigated by exogenous administration of VEGF-C or neutralizing antibodies against VEGFR-3. VEGF-C protein improved lymphedema at 15 days [reducing dermal thickness from 742 ± 105 to 559 ± 141 Όm with 95% confidence intervals (CIs), P \u3c 0.05] without increasing lymphatic capillary coverage (11.6 ± 6.4% following VEGF-C treatment relative to 9.6 ± 6.2% with 95% CIs, P \u3e 0.50). Blocking VEGFR-3 signaling did not inhibit lymphedema resolution at 25 days (dermal thickness of 462 ± 127 Όm following VEGFR-3 inhibition relative to 502 ± 87 Όm with 95% CIs) or inhibit IF, although VEGFR-3 blocking prevented lymphangiogenesis (reducing lymphatic coverage to 0.2 ± 0.7% relative to 8.7 ± 7.3% with 95% CIs, P \u3c 0.005). A second mouse tail lymphedema model was employed to investigate the ability of VEGF-C to increase fluid drainage across a scar. We found that neither neutralization of VEGFR-3 nor administration of VEGF-C affected the course of skin swelling over 25 days. These findings suggest that resolution of lymphedema in the mouse tail skin may be more dependent upon IF and regeneration of the extracellular matrix across the obstruction than lymphatic capillary regeneration. Copyright © 2008 the American Physiological Society

    Lectin‐Like Oxidized Low‐Density Lipoprotein Receptor 1 Inhibition in Type 2 Diabetes: Phase 1 Results

    No full text
    Background Blockade of the lectin‐like oxidized low‐density lipoprotein receptor‐1 (LOX‐1) is a potentially attractive mechanism for lowering inflammatory and lipid risk in patients with atherosclerosis. This study aims to assess the safety, tolerability, and target engagement of MEDI6570, a high‐affinity monoclonal blocking antibody to LOX‐1. Methods and Results This phase 1, first‐in‐human, placebo‐controlled study (NCT03654313) randomized 88 patients with type 2 diabetes to receive single ascending doses (10, 30, 90, 250, or 500 mg) or multiple ascending doses (90, 150, or 250 mg once monthly for 3 months) of MEDI6570 or placebo. Primary end point was safety; secondary and exploratory end points included pharmacokinetics, immunogenicity, free soluble LOX‐1 levels, and change in coronary plaque volume. Mean age was 57.6/58.1 years in the single ascending doses/multiple ascending doses groups, 31.3%/62.5% were female, and mean type 2 diabetes duration was 9.7/8.7 years. Incidence of adverse events was similar among cohorts. MEDI6570 exhibited nonlinear pharmacokinetics, with terminal half‐life increasing from 4.6 days (30 mg) to 11.2 days (500 mg), consistent with target‐mediated drug disposition. Dose‐dependent reductions in mean soluble LOX‐1 levels from baseline were observed (>66% at 4 weeks and 71.61–82.96% at 10 weeks in the single ascending doses and multiple ascending doses groups, respectively). After 3 doses, MEDI6570 was associated with nonsignificant regression of noncalcified plaque volume versus placebo (−13.45 mm3 versus −8.25 mm3). Conclusions MEDI6570 was well tolerated and demonstrated dose‐dependent soluble LOX‐1 suppression and a pharmacokinetic profile consistent with once‐monthly dosing. Registration URL: https://clinicaltrials.gov/; Unique identifier: NCT03654313

    Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43

    No full text
    Healthy cardiomyocytes are electrically coupled at the intercalated discs by gap junctions. In infarcted hearts, adverse gap-junctional remodeling occurs in the border zone, where cardiomyocytes are chemically and electrically influenced by myofibroblasts. The physical movement of these contacts remains unquantified. Using scanning ion conductance microscopy, we show that intercellular contacts between cardiomyocytes and myofibroblasts are highly dynamic, mainly owing to the edge dynamics (lamellipodia) of the myofibroblasts. Decreasing the amount of functional connexin-43 (Cx43) at the membrane through Cx43 silencing, suppression of Cx43 trafficking, or hypoxia-induced Cx43 internalization attenuates heterocellular contact dynamism. However, we found decreased dynamism and stabilized membrane contacts when cellular coupling was strengthened using 4-phenylbutyrate (4PB). Fluorescent-dye transfer between cells showed that the extent of functional coupling between the 2 cell types correlated with contact dynamism. Intercellular calcein transfer from myofibroblasts to cardiomyocytes is reduced after myofibroblast-specific Cx43 down-regulation. Conversely, 4PB-treated myofibroblasts increased their functional coupling to cardiomyocytes. Consistent with lamellipodia-mediated contacts, latrunculin-B decreases dynamism, lowers physical communication between heterocellular pairs, and reduces Cx43 intensity in contact regions. Our data show that heterocellular cardiomyocyte-myofibroblast contacts exhibit high dynamism. Therefore, Cx43 is a potential target for prevention of aberrant cardiomyocyte coupling and myofibroblast proliferation in the infarct border zone.-Schultz, F., Swiatlowska, P., Alvarez-Laviada, A., Sanchez-Alonso, J. L., Song, Q., de Vries, A. A. F., Pijnappels, D. A., Ongstad, E., Braga, V. M. M., Entcheva, E., Gourdie, R. G., Miragoli, M., Gorelik, J. Cardiomyocyte-myofibroblast contact dynamism is modulated by connexin-43

    Lymphangiogenesis-independent resolution of experimental edema

    No full text
    Vascular endothelial growth factor (VEGF)-C is necessary for lymphangiogenesis, and excess VEGF-C has been shown to be ameliorative for edema produced by lymphatic obstruction in experimental models. However, it has recently been shown that edema can resolve in the mouse tail even in the complete absence of capillary lymphangiogenesis when distal lymph fluid crosses the regenerating wound site interstitially. This finding has raised questions about the action of VEGF-C/VEGF receptor (VEGFR) signaling during the resolution of experimental edema. Here, the roles of VEGFR-2 and VEGFR-3 signaling in edema resolution were explored. It was found that edema resolved following neutralization of either VEGFR-2 or VEGFR-3 in the mouse tail skin, which inhibited lymphangiogenesis. Neutralization of either VEGFR-2 or VEGFR-3 reduced angiogenesis at the site of obstruction at day 10 (9.2 ± 1.2% and 11.5 ± 1.0% blood capillary coverage, respectively) relative to controls (14.3 ± 1.5% blood capillary coverage). Combined VEGFR-2/-3 neutralization more strongly inhibited angiogenesis (6.9 ± 1.5% blood capillary coverage), leading to a reduced wound repair of the lymphatic obstruction and extended edema in the tail skin. In contrast, improved tissue repair of the obstruction site increased edema resolution. Macrophages in the swollen tissue were excluded as contributing factors in the VEGFR-dependent extended edema. These results support a role for VEGFR-2/-3-combined signaling in the resolution of experimental edema that is lymphangiogenesis independent

    LOX-1: A potential driver of cardiovascular risk in SLE patients.

    No full text
    Traditional cardiovascular disease (CVD) risk factors, such as hypertension, dyslipidemia and diabetes do not explain the increased CVD burden in systemic lupus erythematosus (SLE). The oxidized-LDL receptor, LOX-1, is an inflammation-induced receptor implicated in atherosclerotic plaque formation in acute coronary syndrome, and here we evaluated its role in SLE-associated CVD. SLE patients have increased sLOX-1 levels which were associated with elevated proinflammatory HDL, oxLDL and hsCRP. Interestingly, increased sLOX-1 levels were associated with patients with early disease onset, low disease activity, increased IL-8, and normal complement and hematological measures. LOX-1 was increased on patient-derived monocytes and low-density granulocytes, and activation with oxLDL and immune-complexes increased membrane LOX-1, TACE activity, sLOX-1 release, proinflammatory cytokine production by monocytes, and triggered the formation of neutrophil extracellular traps which can promote vascular injury. In conclusion, perturbations in the lipid content in SLE patients' blood activate LOX-1 and promote inflammatory responses. Increased sLOX-1 levels may be an indicator of high CVD risk, and blockade of LOX-1 may provide a therapeutic opportunity for ameliorating atherosclerosis in SLE patients
    corecore