12 research outputs found
Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation
Under conditions of high fat diet (HFD) consumption, glucose dyshomeostasis develops when β-cells are unable to adapt to peripheral insulin demands. Few studies have interrogated the molecular mechanisms of β-cell dysfunction at the level of mRNA translation under such conditions. We sought to address this issue through polyribosome profile analysis of islets from mice fed 16-weeks of 42% HFD. HFD-islet analysis revealed clear trends toward global reductions in mRNA translation with a significant reduction in the polyribosome/monoribosome ratio for Pdx1 mRNA. Transcriptional and translational analyses revealed endoplasmic reticulum stress was not the etiology of our findings. HFD-islets demonstrated evidence of oxidative stress and DNA damage, as well as activation of p53. Experiments in MIN-6 β-cells revealed that treatment with doxorubicin to directly induce DNA damage mimicked our observed effects in islets. Islets from animals treated with pioglitazone concurrently with HFD demonstrated a reversal of effects observed from HFD alone. Finally, HFD-islets demonstrated reduced expression of multiple ribosome biogenesis genes and the key translation initiation factor eIF4E. We propose a heretofore unappreciated effect of chronic HFD on β-cells, wherein continued DNA damage owing to persistent oxidative stress results in p53 activation and a resultant inhibition of mRNA translation
Deoxyhypusine synthase, an essential enzyme for hypusine biosynthesis, is required for proper exocrine pancreas development
Pancreatic diseases including diabetes and exocrine insufficiency would benefit from therapies that reverse cellular loss and/or restore cellular mass. The identification of molecular pathways that influence cellular growth is therefore critical for future therapeutic generation. Deoxyhypusine synthase (DHPS) is an enzyme that post-translationally modifies and activates the mRNA translation factor eukaryotic initiation factor 5A (eIF5A). Previous work demonstrated that the inhibition of DHPS impairs zebrafish exocrine pancreas development; however, the link between DHPS, eIF5A, and regulation of pancreatic organogenesis remains unknown. Herein we identified that the conditional deletion of either Dhps or Eif5a in the murine pancreas results in the absence of acinar cells. Because DHPS catalyzes the activation of eIF5A, we evaluated and uncovered a defect in mRNA translation concomitant with defective production of proteins that influence cellular development. Our studies reveal a heretofore unappreciated role for DHPS and eIF5A in the synthesis of proteins required for cellular development and function
MicroRNA 21 targets BCL2 mRNA to increase apoptosis in rat and human beta cells
AIMS/HYPOTHESIS:
The role of beta cell microRNA (miR)-21 in the pathophysiology of type 1 diabetes has been controversial. Here, we sought to define the context of beta cell miR-21 upregulation in type 1 diabetes and the phenotype of beta cell miR-21 overexpression through target identification.
METHODS:
Islets were isolated from NOD mice and mice treated with multiple low doses of streptozotocin, as a mouse model of diabetes. INS-1 832/13 beta cells and human islets were treated with IL-1β, IFN-γ and TNF-α to mimic the milieu of early type 1 diabetes. Cells and islets were transfected with miR-21 mimics or inhibitors. Luciferase assays and polyribosomal profiling (PRP) were performed to define miR-21-target interactions.
RESULTS:
Beta cell miR-21 was increased in in vivo models of type 1 diabetes and cytokine-treated cells/islets. miR-21 overexpression decreased cell count and viability, and increased cleaved caspase 3 levels, suggesting increased cell death. In silico prediction tools identified the antiapoptotic mRNA BCL2 as a conserved miR-21 target. Consistent with this, miR-21 overexpression decreased BCL2 transcript and B cell lymphoma 2 (BCL2) protein production, while miR-21 inhibition increased BCL2 protein levels and reduced cleaved caspase 3 levels after cytokine treatment. miR-21-mediated cell death was abrogated in 828/33 cells, which constitutively overexpress Bcl2. Luciferase assays suggested a direct interaction between miR-21 and the BCL2 3' untranslated region. With miR-21 overexpression, PRP revealed a shift of the Bcl2 message towards monosome-associated fractions, indicating inhibition of Bcl2 translation. Finally, overexpression in dispersed human islets confirmed a reduction in BCL2 transcripts and increased cleaved caspase 3 production.
CONCLUSIONS/INTERPRETATION:
In contrast to the pro-survival role reported in other systems, our results demonstrate that miR-21 increases beta cell death via BCL2 transcript degradation and inhibition of BCL2 translation
Activation of NF-κB drives the enhanced survival of adipose tissue macrophages in an obesogenic environment
Objective: Macrophage accumulation in adipose tissue (AT) during obesity contributes to inflammation and insulin resistance. Recruitment of monocytes to obese AT has been the most studied mechanism explaining this accumulation. However, recent evidence suggests that recruitment-independent mechanisms may also regulate pro-inflammatory AT macrophage (ATM) numbers. The role of increased ATM survival during obesity has yet to be explored.
Results: We demonstrate that activation of apoptotic pathways is significantly reduced in ATMs from diet-induced and genetically obese mice. Concurrently, pro-survival Bcl-2 family member protein levels and localization to the mitochondria is elevated in ATMs from obese mice. This increased pro-survival signaling was associated with elevated activation of the transcription factor, NF-κB, and increased expression of its pro-survival target genes. Finally, an obesogenic milieu increased ATM viability only when NF-κB signaling pathways were functional.
Conclusions: Our data demonstrate that obesity promotes survival of inflammatory ATMs, possibly through an NF-κB-regulated mechanism
Chronic high fat feeding restricts islet mRNA translation initiation independently of ER stress via DNA damage and p53 activation
Under conditions of high fat diet (HFD) consumption, glucose dyshomeostasis develops when β-cells are unable to adapt to peripheral insulin demands. Few studies have interrogated the molecular mechanisms of β-cell dysfunction at the level of mRNA translation under such conditions. We sought to address this issue through polyribosome profile analysis of islets from mice fed 16-weeks of 42% HFD. HFD-islet analysis revealed clear trends toward global reductions in mRNA translation with a significant reduction in the polyribosome/monoribosome ratio for Pdx1 mRNA. Transcriptional and translational analyses revealed endoplasmic reticulum stress was not the etiology of our findings. HFD-islets demonstrated evidence of oxidative stress and DNA damage, as well as activation of p53. Experiments in MIN-6 β-cells revealed that treatment with doxorubicin to directly induce DNA damage mimicked our observed effects in islets. Islets from animals treated with pioglitazone concurrently with HFD demonstrated a reversal of effects observed from HFD alone. Finally, HFD-islets demonstrated reduced expression of multiple ribosome biogenesis genes and the key translation initiation factor eIF4E. We propose a heretofore unappreciated effect of chronic HFD on β-cells, wherein continued DNA damage owing to persistent oxidative stress results in p53 activation and a resultant inhibition of mRNA translation
SERCA2 Deficiency Impairs Pancreatic β-Cell Function in Response to Diet-Induced Obesity.
The sarcoendoplasmic reticulum (ER) Ca(2+) ATPase 2 (SERCA2) pump is a P-type ATPase tasked with the maintenance of ER Ca(2+) stores. Whereas β-cell SERCA2 expression is reduced in diabetes, the role of SERCA2 in the regulation of whole-body glucose homeostasis has remained uncharacterized. To this end, SERCA2 heterozygous mice (S2HET) were challenged with a high-fat diet (HFD) containing 45% of kilocalories from fat. After 16 weeks of the HFD, S2HET mice were hyperglycemic and glucose intolerant, but adiposity and insulin sensitivity were not different between HFD-fed S2HET mice and HFD-fed wild-type controls. Consistent with a defect in β-cell function, insulin secretion, glucose-induced cytosolic Ca(2+) mobilization, and the onset of steady-state glucose-induced Ca(2+) oscillations were impaired in HFD-fed S2HET islets. Moreover, HFD-fed S2HET mice exhibited reduced β-cell mass and proliferation, altered insulin production and proinsulin processing, and increased islet ER stress and death. In contrast, SERCA2 activation with a small molecule allosteric activator increased ER Ca(2+) storage and rescued tunicamycin-induced β-cell death. In aggregate, these data suggest a critical role for SERCA2 and the regulation of ER Ca(2+) homeostasis in the β-cell compensatory response to diet-induced obesity
NMP4, An Arbiter of Bone Cell Secretory Capacity And Regulator of Skeletal Response to PTH Therapy
The skeleton is a secretory organ, and the goal of some osteoporosis therapies is to maximize bone matrix output. Nmp4 encodes a novel transcription factor that regulates bone cell secretion as part of its functional repertoire. Loss of Nmp4 enhances bone response to osteoanabolic therapy, in part, by increasing the production and delivery of bone matrix. Nmp4 shares traits with scaling factors, which are transcription factors that influence the expression of hundreds of genes to govern proteome allocation for establishing secretory cell infrastructure and capacity. Nmp4 is expressed in all tissues and while global loss of this gene leads to no overt baseline phenotype, deletion of Nmp4 has broad tissue effects in mice challenged with certain stressors. In addition to an enhanced response to osteoporosis therapies, Nmp4-deficient mice are less sensitive to high fat diet-induced weight gain and insulin resistance, exhibit a reduced disease severity in response to influenza A virus (IAV) infection, and resist the development of some forms of rheumatoid arthritis. In this review, we present the current understanding of the mechanisms underlying Nmp4 regulation of the skeletal response to osteoanabolics, and we discuss how this unique gene contributes to the diverse phenotypes among different tissues and stresses. An emerging theme is that Nmp4 is important for the infrastructure and capacity of secretory cells that are critical for health and disease
A Translational Regulatory Mechanism Mediated by Hypusinated Eukaryotic Initiation Factor 5A Facilitates β-Cell Identity and Function
As professional secretory cells, β-cells require adaptable mRNA translation to facilitate a rapid synthesis of proteins, including insulin, in response to changing metabolic cues. Specialized mRNA translation programs are essential drivers of cellular development and differentiation. However, in the pancreatic β-cell, the majority of factors identified to promote growth and development function primarily at the level of transcription. Therefore, despite its importance, the regulatory role of mRNA translation in the formation and maintenance of functional β-cells is not well defined. In this study, we have identified a translational regulatory mechanism mediated by the specialized mRNA translation factor eukaryotic initiation factor 5A (eIF5A), which facilitates the maintenance of β-cell identity and function. The mRNA translation function of eIF5A is only active when it is posttranslationally modified ("hypusinated") by the enzyme deoxyhypusine synthase (DHPS). We have discovered that the absence of β-cell DHPS in mice reduces the synthesis of proteins critical to β-cell identity and function at the stage of β-cell maturation, leading to a rapid and reproducible onset of diabetes. Therefore, our work has revealed a gatekeeper of specialized mRNA translation that permits the β-cell, a metabolically responsive secretory cell, to maintain the integrity of protein synthesis necessary during times of induced or increased demand
Retention of sedentary obese visceral white adipose tissue phenotype with intermittent physical activity despite reduced adiposity
Regular physical activity is effective in reducing visceral white adipose tissue (AT) inflammation and oxidative stress, and these changes are commonly associated with reduced adiposity. However, the impact of multiple periods of physical activity, intercalated by periods of inactivity, i.e., intermittent physical activity, on markers of AT inflammation and oxidative stress is unknown. In the present study, 5-wk-old male C57BL/6 mice were randomized into three groups (n = 10/group): sedentary, regular physical activity, and intermittent physical activity, for 24 wk. All animals were singly housed and fed a diet containing 45% kcal from fat. Regularly active mice had access to voluntary running wheels throughout the study period, whereas intermittently active mice had access to running wheels for 3-wk intervals (i.e., 3 wk on/3 wk off) throughout the study. At death, regular and intermittent physical activity was associated with similar reductions in visceral AT mass (approximately −24%, P < 0.05) relative to sedentary. However, regularly, but not intermittently, active mice exhibited decreased expression of visceral AT genes related to inflammation (e.g., monocyte chemoattractant protein 1), immune cell infiltration (e.g., CD68, CD11c, F4/80, CD11b/CD18), oxidative stress (e.g., p47 phagocyte oxidase), and endoplasmic reticulum stress (e.g., CCAAT enhancer-binding protein homologous protein; all P < 0.05). Furthermore, regular, but not intermittent, physical activity was associated with a trend toward improvement in glucose tolerance (P = 0.059). Collectively, these findings suggest that intermittent physical activity over a prolonged period of time may lead to a reduction in adiposity but with retention of a sedentary obese white AT and metabolic phenotype