4 research outputs found
Water–Ice Analogues of Polycyclic Aromatic Hydrocarbons: Water Nanoclusters on Cu(111)
Water has an incredible ability to
form a rich variety of structures,
with 16 bulk ice phases identified, for example, as well as numerous
distinct structures for water at interfaces or under confinement.
Many of these structures are built from hexagonal motifs of water
molecules, and indeed, for water on metal surfaces, individual hexamers
of just six water molecules have been observed. Here, we report the
results of low-temperature scanning tunneling microscopy experiments
and density functional theory calculations which reveal a host of
new structures for water–ice nanoclusters when adsorbed on
an atomically flat Cu surface. The H-bonding networks within the nanoclusters
resemble the resonance structures of polycyclic aromatic hydrocarbons,
and water–ice analogues of inene, naphthalene, phenalene, anthracene,
phenanthrene, and triphenylene have been observed. The specific structures
identified and the H-bonding patterns within them reveal new insight
about water on metals that allows us to refine the so-called “2D
ice rules”, which have so far proved useful in understanding
water–ice structures at solid surfaces
Quantum Tunneling Enabled Self-Assembly of Hydrogen Atoms on Cu(111)
Atomic and molecular self-assembly are key phenomena that underpin many important technologies. Typically, thermally enabled diffusion allows a system to sample many areas of configurational space, and ordered assemblies evolve that optimize interactions between species. Herein we describe a system in which the diffusion is quantum tunneling in nature and report the self-assembly of H atoms on a Cu(111) surface into complex arrays based on local clustering followed by larger scale islanding of these clusters. By scanning tunneling microscope tip-induced scrambling of H atom assemblies, we are able to watch the atomic scale details of H atom self-assembly in real time. The ordered arrangements we observe are complex and very different from those formed by H on other metals that occur in much simpler geometries. We contrast the diffusion and assembly of H with D, which has a much slower tunneling rate and is not able to form the large islands observed with H over equivalent time scales. Using density functional theory, we examine the interaction of H atoms on Cu(111) by calculating the differential binding energy as a function of H coverage. At the temperature of the experiments (5 K), H(D) diffusion by quantum tunneling dominates. The quantum-tunneling-enabled H and D diffusion is studied using a semiclassically corrected transition state theory coupled with density functional theory. This system constitutes the first example of quantum-tunneling-enabled self-assembly, while simultaneously demonstrating the complex ordering of H on Cu(111), a catalytically relevant surface
Quantum Tunneling Enabled Self-Assembly of Hydrogen Atoms on Cu(111)
Atomic and molecular self-assembly are key phenomena that underpin many important technologies. Typically, thermally enabled diffusion allows a system to sample many areas of configurational space, and ordered assemblies evolve that optimize interactions between species. Herein we describe a system in which the diffusion is quantum tunneling in nature and report the self-assembly of H atoms on a Cu(111) surface into complex arrays based on local clustering followed by larger scale islanding of these clusters. By scanning tunneling microscope tip-induced scrambling of H atom assemblies, we are able to watch the atomic scale details of H atom self-assembly in real time. The ordered arrangements we observe are complex and very different from those formed by H on other metals that occur in much simpler geometries. We contrast the diffusion and assembly of H with D, which has a much slower tunneling rate and is not able to form the large islands observed with H over equivalent time scales. Using density functional theory, we examine the interaction of H atoms on Cu(111) by calculating the differential binding energy as a function of H coverage. At the temperature of the experiments (5 K), H(D) diffusion by quantum tunneling dominates. The quantum-tunneling-enabled H and D diffusion is studied using a semiclassically corrected transition state theory coupled with density functional theory. This system constitutes the first example of quantum-tunneling-enabled self-assembly, while simultaneously demonstrating the complex ordering of H on Cu(111), a catalytically relevant surface
Molecular-Scale Perspective of Water-Catalyzed Methanol Dehydrogenation to Formaldehyde
Methanol steam reforming is a promising reaction for on-demand hydrogen production. Copper catalysts have excellent activity and selectivity for methanol conversion to hydrogen and carbon dioxide. This product balance is dictated by the formation and weak binding of formaldehyde, the key reaction intermediate. It is widely accepted that oxygen adatoms or oxidized copper are required to activate methanol. However, we show herein by studying a well-defined metallic copper surface that water alone is capable of catalyzing the conversion of methanol to formaldehyde. Our results indicate that six or more water molecules act in concert to deprotonate methanol to methoxy. Isolated palladium atoms in the copper surface further promote this reaction. This work reveals an unexpected role of water, which is typically considered a bystander in this key chemical transformation