8 research outputs found

    Forest defoliator outbreaks alter nutrient cycling in northern waters.

    Get PDF
    Insect defoliators alter biogeochemical cycles from land into receiving waters by consuming terrestrial biomass and releasing biolabile frass. Here, we related insect outbreaks to water chemistry across 12 boreal lake catchments over 32-years. We report, on average, 27% lower dissolved organic carbon (DOC) and 112% higher dissolved inorganic nitrogen (DIN) concentrations in lake waters when defoliators covered entire catchments and reduced leaf area. DOC reductions reached 32% when deciduous stands dominated. Within-year changes in DOC from insect outbreaks exceeded 86% of between-year trends across a larger dataset of 266 boreal and north temperate lakes from 1990 to 2016. Similarly, within-year increases in DIN from insect outbreaks exceeded local, between-year changes in DIN by 12-times, on average. As insect defoliator outbreaks occur at least every 5 years across a wider 439,661 km2 boreal ecozone of Ontario, we suggest they are an underappreciated driver of biogeochemical cycles in forest catchments of this region.Natural Environment Research Council (NE/L006561/1) Ontario Centres of Excellence (OCE/27649) Natural Sciences and Engineering Research Council of Canada (NSERC/509182-17

    Plant Litter Type Dictates Microbial Communities Responsible for Greenhouse Gas Production in Amended Lake Sediments.

    No full text
    The microbial communities of lake sediments play key roles in carbon cycling, linking lakes to their surrounding landscapes and to the global climate system as incubators of terrestrial organic matter and emitters of greenhouse gasses, respectively. Here, we amended lake sediments with three different plant leaf litters: a coniferous forest mix, deciduous forest mix, cattails (Typha latifolia) and then examined the bacterial, fungal and methanogen community profiles and abundances. Polyphenols were found to correlate with changes in the bacterial, methanogen, and fungal communities; most notably dominance of fungi over bacteria as polyphenol levels increased with higher abundance of the white rot fungi Phlebia spp. Additionally, we saw a shift in the dominant orders of fermentative bacteria with increasing polyphenol levels, and differences in the dominant methanogen groups, with high CH4 production being more strongly associated with generalist groups of methanogens found at lower polyphenol levels. Our present study provides insights into and basis for future study on how shifting upland and wetland plant communities may influence anaerobic microbial communities and processes in lake sediments, and may alter the fate of terrestrial carbon entering inland waters.Funding was provided by NERC Standard Grant NE/L006561/1 to AJT and 521 NSERC Discovery and Canada Research Chair funds to NB
    corecore