2 research outputs found

    Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges

    No full text
    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N<sub>2</sub> gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN<sub><i>x</i></sub>-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N<sub>2</sub> molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS<sub>2</sub>, WS<sub>2</sub>, <i>etc.</i

    Clean Nanotube Unzipping by Abrupt Thermal Expansion of Molecular Nitrogen: Graphene Nanoribbons with Atomically Smooth Edges

    No full text
    We report a novel physicochemical route to produce highly crystalline nitrogen-doped graphene nanoribbons. The technique consists of an abrupt N<sub>2</sub> gas expansion within the hollow core of nitrogen-doped multiwalled carbon nanotubes (CN<sub><i>x</i></sub>-MWNTs) when exposed to a fast thermal shock. The multiwalled nanotube unzipping mechanism is rationalized using molecular dynamics and density functional theory simulations, which highlight the importance of open-ended nanotubes in promoting the efficient introduction of N<sub>2</sub> molecules by capillary action within tubes and surface defects, thus triggering an efficient and atomically smooth unzipping. The so-produced nanoribbons could be few-layered (from graphene bilayer onward) and could exhibit both crystalline zigzag and armchair edges. In contrast to methods developed previously, our technique presents various advantages: (1) the tubes are not heavily oxidized; (2) the method yields sharp atomic edges within the resulting nanoribbons; (3) the technique could be scaled up for the bulk production of crystalline nanoribbons from available MWNT sources; and (4) this route could eventually be used to unzip other types of carbon nanotubes or intercalated layered materials such as BN, MoS<sub>2</sub>, WS<sub>2</sub>, <i>etc.</i
    corecore