2 research outputs found

    Nanomolar Antimalarial Agents against Chloroquine-Resistant <i>Plasmodium falciparum</i> from Medicinal Plants and Their Structure–Activity Relationships

    No full text
    Inspired by the discovery of the antimalarial drug artemisinin from a traditional Chinese medicine (TCM), a natural product library of 44 lindenane-type sesquiterpenoids was assessed for activities against the Dd2 chloroquine-resistant strain of the malaria parasite <i>Plasmodium falciparum</i>. These compounds were mainly isolated from plants of the <i>Chloranthus</i> genus, many species of which are named “Sikuaiwa” in TCM and have long been used to treat malaria. The compounds consisted of 41 sesquiterpenoid dimers and three monomers, including the 12 new dimers <b>1</b>–<b>12</b> isolated from <i>Chloranthus fortunei</i>. The results showed that 16 dimers exhibited potent antiplasmodial activities (<100 nM); in particular, compounds <b>1</b>, <b>14</b>, and <b>19</b> exhibited low nanomolar activities with IC<sub>50</sub> values ranging from 1 to 7 nM, which is comparable to the potency of artemisinin, and selectivity index values toward mammalian cells greater than 500. A comprehensive structure–activity relationship study indicated that three functional groups are essential and two motifs can be modified

    Biological Studies and Target Engagement of the 2‑<i>C</i>‑Methyl‑d‑Erythritol 4‑Phosphate Cytidylyltransferase (IspD)-Targeting Antimalarial Agent (1<i>R</i>,3<i>S</i>)‑MMV008138 and Analogs

    No full text
    Malaria continues to be one of the deadliest diseases worldwide, and the emergence of drug resistance parasites is a constant threat. <i>Plasmodium</i> parasites utilize the methylerythritol phosphate (MEP) pathway to synthesize isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), which are essential for parasite growth. Previously, we and others identified that the Malaria Box compound MMV008138 targets the apicoplast and that parasite growth inhibition by this compound can be reversed by supplementation of IPP. Further work has revealed that MMV008138 targets the enzyme 2-<i>C</i>-methyl-d-erythritol 4-phosphate cytidylyltransferase (IspD) in the MEP pathway, which converts MEP and cytidine triphosphate (CTP) to cytidinediphosphate methylerythritol (CDP-ME) and pyrophosphate. In this work, we sought to gain insight into the structure–activity relationships by probing the ability of MMV008138 analogs to inhibit <i>Pf</i>IspD recombinant enzyme. Here, we report <i>Pf</i>IspD inhibition data for fosmidomycin (FOS) and 19 previously disclosed analogs and report parasite growth and <i>Pf</i>IspD inhibition data for 27 new analogs of MMV008138. In addition, we show that MMV008138 does not target the recently characterized human IspD, reinforcing MMV008138 as a prototype of a new class of species-selective IspD-targeting antimalarial agents
    corecore