30 research outputs found

    Spectral broadening in self-assembled GaAs quantum dots with narrow size distribution

    Full text link
    The control over the spectral broadening of an ensemble of emitters, mainly attributable to the size and shape dispersion and the homogenous broadening mechanisms, is crucial to several applications of quantum dots. We present a convenient self-assembly approach to deliver strain-free GaAs quantum dots with size distribution below 15%, due to the control of the growth parameters during the preliminary formation of the Ga droplets. This results in an ensemble photoluminescence linewidth of 19 meV at 14 K. The narrow emission band and the absence of a wetting layer promoting dot-dot coupling allow us to deconvolve the contribution of phonon broadening in the ensemble photoluminescence and study it in a wide temperature range.Comment: 9 pages, 4 figure

    High-temperature droplet epitaxy of symmetric GaAs/AlGaAs quantum dots

    Full text link
    We introduce a high-temperature droplet epitaxy procedure, based on the control of the arsenization dynamics of nanoscale droplets of liquid Ga on GaAs(111)A surfaces. The use of high temperatures for the self-assembly of droplet epitaxy quantum dots solves major issues related to material defects, introduced during the droplet epitaxy fabrication process, which limited its use for single and entangled photon sources for quantum photonics applications. We identify the region in the parameter space which allows quantum dots to self-assemble with the desired emission wavelength and highly symmetric shape while maintaining a high optical quality. The role of the growth parameters during the droplet arsenization is discussed and modelled.Comment: 18 pages, 5 figure

    High-yield fabrication of entangled photon emitters for hybrid quantum networking using high-temperature droplet epitaxy

    Full text link
    Several semiconductor quantum dot techniques have been investigated for the generation of entangled photon pairs. Among the other techniques, droplet epitaxy enables the control of the shape, size, density, and emission wavelength of the quantum emitters. However, the fraction of the entanglement-ready quantum dots that can be fabricated with this method is still limited to around 5%, and matching the energy of the entangled photons to atomic transitions (a promising route towards quantum networking) remains an outstanding challenge. Here, we overcome these obstacles by introducing a modified approach to droplet epitaxy on a high symmetry (111)A substrate, where the fundamental crystallization step is performed at a significantly higher temperature as compared to previous reports. Our method drastically improves the yield of entanglement-ready photon sources near the emission wavelength of interest, which can be as high as 95% due to the low values of fine structure splitting and radiative lifetime, together with the reduced exciton dephasing offered by the choice of GaAs/AlGaAs materials. The quantum dots are designed to emit in the operating spectral region of Rb-based slow-light media, providing a viable technology for quantum repeater stations.Comment: 14 pages, 3 figure

    Tensile strain in Ge membranes induced by SiGe nanostressors

    Get PDF
    The monolithic integration of photonic functionality into silicon microtechnology is widely advanced. Yet, there is no final solution for the realization of a light source compatible with the prevailing complementary metal-oxide-semiconductor technology. A lot of research effort focuses on germanium (Ge) on silicon (Si) heterostructures and tensile strain application to Ge is accepted as one feasible route to make Ge an efficient light emitter. Prior work has documented the special suitability of Ge membranes to reach the high tensile strain. We present a top-down approach for the creation of SiGe stressors on Ge micro-bridges and compare the obtained strain to the case of an attached bulk-like Ge layer. We could show that the Ge influenced by a SiGe stressor is under tensile strain; absolute strain values are of the order of 0.7% for both micro-bridge and bulk. The relative strain induced by the nanostructures in the micro-bridge is 1.3% due to the high sharing of elastic energy between nanostructures and bridges

    Disentangling nonradiative recombination processes in Ge micro-crystals on Si substrates

    Get PDF
    We address nonradiative recombination pathways by leveraging surface passivation and dislocation management in μm-scale arrays of Ge crystals grown on deeply patterned Si substrates. The time decay photoluminescence (PL) at cryogenic temperatures discloses carrier lifetimes approaching 45 ns in band-gap engineered Ge micro-crystals. This investigation provides compelling information about the competitive interplay between the radiative band-edge transitions and the trapping of carriers by dislocations and free surfaces. Furthermore, an in-depth analysis of the temperature dependence of the PL, combined with capacitance data and finite difference time domain modeling, demonstrates the effectiveness of GeO2 in passivating the surface of Ge and thus in enhancing the room temperature PL emission

    Emerging Two-Dimensional Materials: Inspiring Nanotechnologies for Smart Energy Management

    No full text
    Two-dimensional (2D) materials are a class of materials that can be reduced to a thickness of a few layers, exhibiting peculiar and innovative properties relative to their three-dimensional solid counterparts [...
    corecore