11 research outputs found

    Indoor Climate Modelling and Economic Analysis Regarding the Energetic Rehabilitation of a Church

    No full text
    Background: The aim of our study was to identify an optimal heating system for the analyzed church. We also evaluated the energy consumption of the existing system and of those proposed in order to choose the best heating system. Methods: We analyzed the current existing heating system, a mixed system (static heaters and hot air heating) in a Romanian heritage church, build in the 16th century, and we compared it with an underfloor heating system that has been mentioned in the literature as an alternative for church heating. We used a computational fluid dynamics (CFD) analysis of the indoor climate with two turbulence models (k-ε and k-ω). Results: Comparing the two heating systems through boxplot graphs, we could highlight pertinent conclusions regarding the temperatures and velocities of the measured air currents. Thus, of all the heating systems, the underfloor heating had the lowest temperatures, but the highest air velocities, in the churchgoers area, especially under the towers zone. Conclusions: We observed that the underfloor heating system was more efficient than the existing heating system (static heaters and hot air heating), ensuring heritage conservation and high thermal comfort to the churchgoers

    The Indoor Climate Modelling and the Economic Analysis Regarding the Energetic Rehabilitation of Church

    Full text link
    The paper describes the behaviour of a heating system with radiators in a cult building. There has commonly used in many churches with many shortcomings. The temperature distribution in the analysed space is simulated in 2D. The simulation is based on an example, the Cathedral of the Assumption of the Virgin Mary in Jassy. The heating system with radiators simulated with the FLUENT program, the results being edifying for the factual state of the building. An important aspect is the impact of these heating systems on the works of art, the church being the 18th — century edifice. Current environmental issues lead to the continuous development of technologies used to reduce primary energy consumption. Churches are an invaluable wealth, sheltering heritage elements preserved in museums and historic buildings. Unheated churches have been used for centuries. Then, after installing one or more different heating systems, signs of rapid degradation appeared

    Prospects of COVID-19 Vaccination in Romania: Challenges and Potential Solutions

    Get PDF
    The rapid advancement in vaccine development represents a critical milestone that will help humanity tackle the COVID-19 pandemic. However, the success of these efforts is not guaranteed, as it relies on the outcomes of national and international vaccination strategies. In this article, we highlight some of the challenges that Romania will face and propose a set of solutions to overcome them. With this in mind, we discuss issues such as the infrastructure of vaccine storage and delivery, the deployment and administration of immunisations, and the public acceptance of vaccines. The ways in which Romanian society will respond to a national COVID-19 vaccination campaign will be contingent on appropriate and timely actions. As many of the problems encountered in Romania are not unique, the proposed recommendations could be adapted and implemented in other countries that face similar issues, thereby informing better practices in the management of the COVID-19 pandemic

    Comparative Numerical Studies on the Structural Behavior of Buried Pipes Subjected to Extreme Environmental Actions

    No full text
    Globally, there are several critical infrastructure networks (water and gas networks) whose disruption or destruction would significantly affect the maintenance of vital societal functions, such as the health, safety, security, and social or economic well-being of people. They would also have significant local, regional, and national impacts as a result of the inability to maintain those functions, and would have similar cross-border effects. The main objective of this article is to investigate by comparative numerical studies the structural response of three types of buried pipes made of different materials, primarily steel, concrete, and high-density polyethylene, resulting from the impact of the environment through exceptional external actions, such as explosions at the surface of the land in the vicinity of the laying areas. The dynamic transient analysis of the equation of motion with the application of the explicit integration procedure was performed with the ANSYS numerical simulation program. This study allows designers to solve complex problems related to the quality of the laying ground of water networks to canals. The knowledge accumulated gives us the possibility to correctly specify the optimal economic and technical value of the ratio between the laying depth of pipes and their diameter, the importance of the radius ratio of the pipe and the thickness of its wall, and, importantly, the improvement of the quality of the foundation ground. Following the results obtained, it is estimated that the optimal economic and technical value of the ratio between the laying depth of the pipes (H) and their diameter (D) is 3, regardless of the material from which the pipe is made

    Effect of Wind Direction and Velocity on PV Panels Cooling with Perforated Heat Sinks

    No full text
    The numerical modeling of the effect of wind direction and velocity over the air cooling of PV panels with heat sinks is realized. During the study, a random PV panel with typical characteristics was analyzed for three different wind directions—towards its back, towards its front and from the side. The analysis was realized on a fixed PV panel, oriented to the south, with an inclination of 45 degrees from the horizontal position. The accuracy of the numerical simulation was achieved by comparison with the experimental studies presented in the literature and by comparing the NOCT conditions. The numerical study is focused on different types of heat sinks attached to a typical PV panel. The fins were distributed both horizontally and vertically. A challenging task consisted in simulation of the real wind conditions around the PV panel by taking into account the entire air domain. The simulations were realized for air velocity vair from 1 m/s to 5 m/s, solar radiation of G = 1000 W/m2 and ambient temperature tair = 35 °C. The output parameters analyzed were the average temperature of PV panels and their power production. Although the lowest temperatures were achieved for the back wind, the cooling effect was more intense for the side wind. The other direction studied also determined the cooling of PV panels. The passive cooling solutions analyzed introduced a rise of maximum power production between 1.85% and 7.71% above the base case, depending on the wind direction and velocity

    Effect of Wind Direction and Velocity on PV Panels Cooling with Perforated Heat Sinks

    No full text
    The numerical modeling of the effect of wind direction and velocity over the air cooling of PV panels with heat sinks is realized. During the study, a random PV panel with typical characteristics was analyzed for three different wind directions—towards its back, towards its front and from the side. The analysis was realized on a fixed PV panel, oriented to the south, with an inclination of 45 degrees from the horizontal position. The accuracy of the numerical simulation was achieved by comparison with the experimental studies presented in the literature and by comparing the NOCT conditions. The numerical study is focused on different types of heat sinks attached to a typical PV panel. The fins were distributed both horizontally and vertically. A challenging task consisted in simulation of the real wind conditions around the PV panel by taking into account the entire air domain. The simulations were realized for air velocity vair from 1 m/s to 5 m/s, solar radiation of G = 1000 W/m2 and ambient temperature tair = 35 °C. The output parameters analyzed were the average temperature of PV panels and their power production. Although the lowest temperatures were achieved for the back wind, the cooling effect was more intense for the side wind. The other direction studied also determined the cooling of PV panels. The passive cooling solutions analyzed introduced a rise of maximum power production between 1.85% and 7.71% above the base case, depending on the wind direction and velocity

    Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania

    No full text
    In the context of energy conservation and sustainable development, building design should take into account the energy efficiency criteria by using renewable energy sources. Double-skin facades (DSF) represent innovative energy-efficient techniques that have gained increasing interest worldwide. The present study reports the results of an experimental campaign performed on a full-scale double-skin façade using the in-situ measurement methodology. The thermodynamic behavior of the façade is studied under real exterior climatic conditions in Romania in hot and cold seasons, and performance indicators in terms of pre-heating efficiency and dynamic insulation efficiency were determined. Three summer periods are analyzed corresponding to the outdoor air curtain scenario for three ventilation modes in naturally or mechanically ventilated single-story DSF. Results revealed that the third ventilation scenario, which combines horizontal and vertical openings, gives the best efficiency of 71.3% in the double skin façade functioning. During the cold season, the channel façade behaved like a thermal buffer between the building and the exterior air, ensuring the thermal energy for partial or integral heating of the building

    Experimental Study on Airflow and Temperature Predicting in a Double Skin Façade in Hot and Cold Seasons in Romania

    No full text
    In the context of energy conservation and sustainable development, building design should take into account the energy efficiency criteria by using renewable energy sources. Double-skin facades (DSF) represent innovative energy-efficient techniques that have gained increasing interest worldwide. The present study reports the results of an experimental campaign performed on a full-scale double-skin façade using the in-situ measurement methodology. The thermodynamic behavior of the façade is studied under real exterior climatic conditions in Romania in hot and cold seasons, and performance indicators in terms of pre-heating efficiency and dynamic insulation efficiency were determined. Three summer periods are analyzed corresponding to the outdoor air curtain scenario for three ventilation modes in naturally or mechanically ventilated single-story DSF. Results revealed that the third ventilation scenario, which combines horizontal and vertical openings, gives the best efficiency of 71.3% in the double skin façade functioning. During the cold season, the channel façade behaved like a thermal buffer between the building and the exterior air, ensuring the thermal energy for partial or integral heating of the building
    corecore