8 research outputs found
Recycling of Polymeric Composite Materials
This chapter treats studies about the methods and technologies used to recycle the polymeric composite materials and develop new recipes using waste of polymer composite materials resulted from recycling. Composite materials obtained from recycling are presented, with a complete recovery of waste glass fibers. Also, the mechanical properties for new structures of polymeric composite materials, containing additional materials were presented. These were obtained from the recycling of composite waste. A morphology analysis of fracture area of composites samples was done. At present, the polymeric composite materials present a great scientific and technical interest, which justify both the development of research in this field, and the expansion of production of such materials. The author treats aspects regarding a current problem due to the large number of polymeric composite materials waste, and reduced of environmental impact. This field is representing one of the top viable research directions
Chapter Recycling of Polymeric Composite Materials
This chapter treats studies about the methods and technologies used to recycle the polymeric composite materials and develop new recipes using waste of polymer composite materials resulted from recycling. Composite materials obtained from recycling are presented, with a complete recovery of waste glass fibers. Also, the mechanical properties for new structures of polymeric composite materials, containing additional materials were presented. These were obtained from the recycling of composite waste. A morphology analysis of fracture area of composites samples was done. At present, the polymeric composite materials present a great scientific and technical interest, which justify both the development of research in this field, and the expansion of production of such materials. The author treats aspects regarding a current problem due to the large number of polymeric composite materials waste, and reduced of environmental impact. This field is representing one of the top viable research directions
Chapter Recycling of Polymeric Composite Materials
This chapter treats studies about the methods and technologies used to recycle the polymeric composite materials and develop new recipes using waste of polymer composite materials resulted from recycling. Composite materials obtained from recycling are presented, with a complete recovery of waste glass fibers. Also, the mechanical properties for new structures of polymeric composite materials, containing additional materials were presented. These were obtained from the recycling of composite waste. A morphology analysis of fracture area of composites samples was done. At present, the polymeric composite materials present a great scientific and technical interest, which justify both the development of research in this field, and the expansion of production of such materials. The author treats aspects regarding a current problem due to the large number of polymeric composite materials waste, and reduced of environmental impact. This field is representing one of the top viable research directions
Finite element simulation of delamination process in composite materials
The delamination phenomenon is undesirable and constitutes a major problem. In this paper, a study of delamination for composite materials reinforced with unidirectional glass fibers in polyester matrix is analyzed. The composite plates were made using two manufacturing technologies, hand lay-up and compression hand lay-up process. The study found out the maximum value of the force where delamination occurs and the specific delamination resistance. Also, it’s done a finite element simulation of delamination process at polymeric composite materials under transverse loads. The propagation model ofdelamination was implemented in finite element ANSYS software. There are presented the used materials for samples, the manufacturing process, laboratory equipment and the experimental results
Experimental research regarding carbon fiber/epoxy material manufactured by autoclave process
The fiber reinforced polymers (FRP) represent a group of materials with a very impressive development in the last time. There are used in different applications from aerospace to sports or medicine. Carbon fiber reinforced polymer (CFRP) has special properties and tend to replace traditional materials like steel, aluminum alloys or wood. Different procedures were developed to manufacture the CFRP. Autoclave processing can be considered the most important way to obtain the best mechanical properties of this kind of material. In this paper it is presented the autoclave manufacturing process to obtain theCFRP plates. The autoclave polymerization process steps are indicated for the CFRP made of Twill textile prepreg material. The stacking sequence of the layers is [0/90]. To determine the mechanical properties of the material tensile test on standardized specimens was employed. The obtained mechanical material’s properties are comparable with steel but its density was reduced 5.5 times
Evaluation of Novel Ornamental Cladding Resistance, Comprised of GFRP Waste and Polyester Binder, within an Acid Environment
The paper presents the manufacturing technology for a material obtained from glass fiber waste, quartz sand, and polyester binder, used for ornamental building plates. The composite has a cover surface that ensures protection of the material from environment attacks and a structural material that can be subjected to chemical degradation. The mechanical properties of the obtained material were experimentally investigated through compressive mechanical tests. To observe the material’s behavior in contact with external agents (rain or acid rain, due to environmental pollution), analyses were performed in laboratory conditions. An investigation on the effects of chemical attack substances was conducted. SEM and macroscopic analyses were performed, and the surface roughness was determined for each sample area. The obtained results were statistically analyzed and showed that there is no significant difference between the surface roughness for treated and untreated samples. Furthermore, the surfaces were analyzed by X-ray diffraction and mineralogical optical microscopy in polarized light with crossed nicols. It was observed that rainwater does not affect the plate structure even if the plates are used in high-pollution environments. The material is suitable for exterior building walls from the point of view of chemical attack and resistance
Evaluation of Novel Ornamental Cladding Resistance, Comprised of GFRP Waste and Polyester Binder, within an Acid Environment
The paper presents the manufacturing technology for a material obtained from glass fiber waste, quartz sand, and polyester binder, used for ornamental building plates. The composite has a cover surface that ensures protection of the material from environment attacks and a structural material that can be subjected to chemical degradation. The mechanical properties of the obtained material were experimentally investigated through compressive mechanical tests. To observe the material’s behavior in contact with external agents (rain or acid rain, due to environmental pollution), analyses were performed in laboratory conditions. An investigation on the effects of chemical attack substances was conducted. SEM and macroscopic analyses were performed, and the surface roughness was determined for each sample area. The obtained results were statistically analyzed and showed that there is no significant difference between the surface roughness for treated and untreated samples. Furthermore, the surfaces were analyzed by X-ray diffraction and mineralogical optical microscopy in polarized light with crossed nicols. It was observed that rainwater does not affect the plate structure even if the plates are used in high-pollution environments. The material is suitable for exterior building walls from the point of view of chemical attack and resistance
Mechanical and Wetting Properties of Ta<sub>2</sub>O<sub>5</sub> and ZnO Coatings on Alloy Substrate of Cardiovascular Stents Manufactured by Casting and DMLS
In the last years, additive manufacturing technologies have been developed, especially direct metal laser sintering, and used in the dental and medical implant domains. Cardiovascular stents have evolved from bioinert, bare metal cages to biomimetic devices that promote tissue regeneration or healing. In this paper, comparisons concerning mechanical properties between Co–Cr alloy and cast 304L stainless steel were realized using FEM analysis, necessary for manufacturing cardiovascular stents by DMLS technology using Co–Cr alloy. The purpose of this paper consists of the evaluation of the contact angle at the interface of the Co–Cr alloy manufactured by DMLS, respectively, cast stainless steel 304L, and thin film deposition realized by the e-gun method (Ta2O5 and ZnO). Scanning electronic microscopy SEM and EDX techniques were employed for morphological investigation of the sintered samples manufactured by the DMLS process. They were also used for semi-quantitative and qualitative chemical and metallographic analyses. The e-gun coating was used to obtain thin films with the nanometer order of Ta2O5 and ZnO with a protective role to improve the corrosion resistance, roughness, and antiseptic role