22 research outputs found

    Demographic responses of boreal-montane orchid Malaxis monophyllos (L.) Sw. populations to contrasting environmental conditions

    Get PDF
    In an age of changes in species’ geographical ranges, compounded by climatic and anthropogenic impacts, it become important to know which processes and factors influence plant populations and their persistence in the long term.Here we investigated dynamic and fitness components in twelve populations of Malaxis monophyllos (L.) Sw., situated in different geographical (regions) and ecological (type of habitat) units. Although M. monophyllos is a rare species, characterized by highly fragmented, boreal-montane distribution range, in last few decades it successfully colonized secondary habitats in Polish uplands. Our results indicate that M. monophyllos is represented mainly by small populations, which annual spatial and temporal changes might be very high, what affects the ephemeral character of these populations, regardless of the region and type of habitat. This dynamic structure, in turn, is caused by intensive exchange of individuals in populations, as well as by their short above-ground life span. Despite the large range of variation in size and reproductive traits, we can distinguish some regional patterns, which indicate boreal region as the most optimal for M. monophyllos growth and persistence in the long term, and with montane and upland/anthropogenic populations, due to lower reproductive parameters, as the most threatened. Although it should be considered that anthropogenic populations, despite their lower reproductive parameters and instability in the long term, present an intermediate, geographical and ecological character, therefore they may be valuable in shaping, both M. monophyllos’ future range, as well as its potential for response on ongoing and future changes. In general, reproduction is the main factor differentiating of M. monophyllos populations in regions, and we can suspect that it may become the cause of the future differentiation and isolation of these populations, occurring with progressive range fragmentation

    Are hermaphrodites better adapted to the colonization process in trioecious populations of Salix myrsinifolia?

    Get PDF
    In trioecious plant populations, the role of hermaphroditism is often uncertain. We investigated the advantages of hermaphroditism in the dioecious shrub Salix myrsinifolia. The sex ratio of 30 S. myrsinifolia populations in northeastern Poland (secondary range) and Lithuania (primary range) was investigated in 2010–2011. Measures of reproductive (number of catkins, number of flowers in catkins) and vegetative traits (height, diameter, number of shoots, vitality) were taken and compared among sexual morphs. In two populations, measurements collected 14 years prior on marked individuals were used to determine the rate of changes in height, crown diameter and survivorship rates. We found trioecy mostly in the secondary part of the range with an average share of hermaphrodites reaching 21% in the trioecious populations. The sex ratio varied between populations, but tended mostly towards female domination. Several traits differed significantly among sexes. The characteristics of hermaphrodites were often intermediate between males and females and provided no evidence for the higher competitive abilities of hermaphrodites. We concluded that the possible gain of hermaphroditism in the colonization process is restricted to reproduction. We consider hermaphroditism in S. myrsinifolia as an equilibrium between the allocation of resources for growth and reproduction in unstable conditions on the margins of the range

    Pollinator limitation affects low reproductive success in populations of nectarless orchid in the Biebrza National Park

    Get PDF
    The deficiency of pollinators is indicated as the main factor limiting fruit set in orchids. Nectariferous species are more successful in setting fruits than nectarless species. In the present study, we tested whether pollinator limitation lowers reproductive success in populations of Cypripedium calceolus on environmental islands in the Biebrza National Park, NE Poland. Moreover, we analyzed how population size and structure affect pollination success. Our observations and results of experiments document the low level of fruiting in populations of nectarless C. calceolus (9.2% on average) and strong pollen limitation. Generally, we noted a positive relationship between pollination success and all parameters of population size (measured by both occupied area and number of clumps or shoots) and parameters measuring floral display (number of flowers in population, number of flowers in clumps, spatial structure of flowering shoots). We suggest that information about factors influencing the reproductive success of this endangered species may be useful for planning appropriate conservation actions

    Breeding system variability, pollination biology, and reproductive success of rare Polemonium caeruleum L. in NE Poland

    Get PDF
    Polemonium caeruleum (Polemoniaceae) represents a very interesting system of compatibility transition. Studies of its biological and ecological properties in the context of the breeding system of various populations may help to understand the evolutionary mechanism of this process. We investigated some aspects of the breeding system, diversity and foraging behavior of the visitors, and relationship between population properties and fruit set in three populations from NE Poland. We found distinct compatibility systems in two studied populations and showed that if a population is self-compatible (SC), selfing is mediated by insects via geitonogamous pollen transfer. Despite the population properties (compatibility, visitor diversity and activity, population size, density, or floral display), P. caeruleum is not pollen limited and pollinators are highly important as a key factor determining the high reproductive success. Visitor assemblages (including key pollinators, bumblebees, and honey bees) and their foraging behavior on inflorescences vary between the populations, which may influence differences in the breeding system. The self-incompatible population was visited by a more diverse group of insects from Hymenoptera, Diptera, Lepidoptera, Heteroptera, and Coeloptera, which may favor effective cross-pollen transfer, whereas the SC population was pollinated mainly by Apis mellifera, which may promote mixed-mating. Studies on a wider range of P. caeruleum populations are needed to determine selective factors responsible for compatibility transition

    Seed dispersal in six species of terrestrial orchids in Biebrza National Park (NE Poland)

    Get PDF
    Knowledge about seed dispersal is required to explain problems in ecology, phylogeography, and conservation biology. Even though seed dispersal is a fundamental mechanism to understand problems at different levels of biological organization (individual, population, species, landscape), it remains one of the least recognized processes. Similar to other groups of plants, very little is known regarding patterns and distances of seed dispersal in orchids. Orchid seeds are generally assumed to be widely dispersed by wind because of their small size and low weight. Between 2006 and 2008, we conducted a field study of the distances at which orchid seeds are dispersed, and determined factors affecting dispersal. Investigations included 13 populations of six terrestrial orchid species – Cypripedium calceolus, Cephalanthera rubra, Epipactis helleborine, Goodyera repens, Neottia ovata, and Platanthera bifolia. To evaluate seed dispersal in orchid populations, 8.5-cm Petri dishes (traps) with self-adhesive paper were placed along transects, starting from a group of fruiting plants, which were considered to be the dispersal source. Seeds of the investigated orchid species were dispersed over relatively short distances. There were statistically significant negative correlations between seed density and distance from the fruiting plants. Seeds of species with taller fruiting shoots were dispersed farther than those with shorter ones (R = 0.68, p < 0.05). We discuss the causes and consequences of the dispersal patterns of orchid seeds

    Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity

    Get PDF
    Background and Aims Patterns of ploidy variation among and within populations can provide valuable insights into the evolutionary mechanisms shaping the dynamics of plant systems showing ploidy diversity. Whereas data on majority ploidies are, by definition, often sufficiently extensive, much less is known about the incidence and evolutionary role of minority cytotypes. Methods Ploidy and proportions of endoreplicated genome were determined using DAPI (4',6-diamidino-2-phenylindole) flow cytometry in 6150 Gymnadenia plants (fragrant orchids) collected from 141 populations in 17 European countries. All widely recognized European species, and several taxa of less certain taxonomic status were sampled within Gymnadenia conopsea sensu lato. Key Results Most Gymnadenia populations were taxonomically and/or ploidy heterogeneous. Two majority (2x and 4x) and three minority (3x, 5x and 6x) cytotypes were identified. Evolution largely proceeded at the diploid level, whereas tetraploids were much more geographically and taxonomically restricted. Although minority ploidies constituted <2 % of the individuals sampled, they were found in 35 % of populations across the entire area investigated. The amount of nuclear DNA, together with the level of progressively partial endoreplication, separated all Gymnadenia species currently widely recognized in Europe. Conclusions Despite their low frequency, minority cytotypes substantially increase intraspecific and intrapopulation ploidy diversity estimates for fragrant orchids. The cytogenetic structure of Gymnadenia populations is remarkably dynamic and shaped by multiple evolutionary mechanisms, including both the ongoing production of unreduced gametes and heteroploid hybridization. Overall, it is likely that the level of ploidy heterogeneity experienced by most plant species/populations is currently underestimated; intensive sampling is necessary to obtain a holistic pictur

    Floral Nectar Chemistry in Orchids: A Short Review and Meta-Analysis

    No full text
    Nectar is one of the most important flower traits, shaping plant–pollinator interactions and reproductive success. Despite Orchidaceae including numerous nectariferous species, nectar chemistry in this family has been infrequently studied. Therefore, the aim of this study is to compile data about nectar attributes in different orchid species. The scarcity of data restricted analyses to sugar concentration and composition. Our results suggest that the most important factor shaping nectar traits in orchids is the pollinator type, although we also found differentiation of nectar traits according to geographical regions. In spurred orchids, the length of the spur impacted nectar traits. We recommend the development of studies on nectar chemistry in orchids, including a wider range of species (both in taxonomic and geographical contexts), as well as extending the analyses to other nectar components (such as amino acids and secondary metabolites). The nectar biome would be also worth investigating, since it could affect the chemical composition of nectar. This will enrich the understanding of the mechanisms of plants–pollinators interactions

    Floral Nectar Chemistry in Orchids: A Short Review and Meta-Analysis

    No full text
    Nectar is one of the most important flower traits, shaping plant–pollinator interactions and reproductive success. Despite Orchidaceae including numerous nectariferous species, nectar chemistry in this family has been infrequently studied. Therefore, the aim of this study is to compile data about nectar attributes in different orchid species. The scarcity of data restricted analyses to sugar concentration and composition. Our results suggest that the most important factor shaping nectar traits in orchids is the pollinator type, although we also found differentiation of nectar traits according to geographical regions. In spurred orchids, the length of the spur impacted nectar traits. We recommend the development of studies on nectar chemistry in orchids, including a wider range of species (both in taxonomic and geographical contexts), as well as extending the analyses to other nectar components (such as amino acids and secondary metabolites). The nectar biome would be also worth investigating, since it could affect the chemical composition of nectar. This will enrich the understanding of the mechanisms of plants–pollinators interactions

    Nectar Chemistry or Flower Morphology—What Is More Important for the Reproductive Success of Generalist Orchid Epipactis palustris in Natural and Anthropogenic Populations?

    No full text
    The aim of this study was to determine the level of reproductive success (RS) in natural and anthropogenic populations of generalist orchid Epipactis palustris and its dependence on flower structure and nectar composition, i.e., amino acids and sugars. We found that both pollinaria removal and female reproductive success were high and similar in all populations, despite differences in flower traits and nectar chemistry. Flower structures were weakly correlated with parameters of RS. Nectar traits were more important in shaping RS; although, we noted differentiated selection on nectar components in distinct populations. Individuals in natural populations produced nectar with a larger amount of sugars and amino acids. The sucrose to (fructose and glucose) ratio in natural populations was close to 1, while in anthropogenic ones, a clear domination of fructose and glucose was noted. Our results indicate that the flower traits and nectar composition of E. palustris reflect its generalist character and meet the requirements of a wide range of pollinators, differing according to body sizes, mouth apparatus, and dietary needs. Simultaneously, differentiation of nectar chemistry suggests a variation of pollinator assemblages in particular populations or domination of their some groups. To our knowledge, a comparison of nectar chemistry between natural and anthropogenic populations of orchids is reported for the first time in this paper

    Pollinator limitation affects low reproductive success in populations of nectarless orchid in the Biebrza National Park

    No full text
    The deficiency of pollinators is indicated as the main factor limiting fruit set in orchids. Nectariferous species are more successful in setting fruits than nectarless species. In the present study, we tested whether pollinator limitation lowers reproductive success in populations of Cypripedium calceolus on environmental islands in the Biebrza National Park, NE Poland. Moreover, we analyzed how population size and structure affect pollination success. Our observations and results of experiments document the low level of fruiting in populations of nectarless C. calceolus (9.2% on average) and strong pollen limitation. Generally, we noted a positive relationship between pollination success and all parameters of population size (measured by both occupied area and number of clumps or shoots) and parameters measuring floral display (number of flowers in population, number of flowers in clumps, spatial structure of flowering shoots). We suggest that information about factors influencing the reproductive success of this endangered species may be useful for planning appropriate conservation actions
    corecore