13 research outputs found

    Cl-IB-MECA Inhibits Human Thyroid Cancer Cell Proliferation Independently of A3 Adenosine Receptor Activation

    Get PDF
    A3 adenosine receptor (A3AR) agonists have been reported to modulate cellular proliferation. This work was aimed to investigate the expression and the possible implication of A3AR in the human thyroid carcinomas. Normal thyroid tissue samples did not express A3 adenosine receptor, while primary thyroid cancer tissues expressed high level of A3AR, as determined by immunohistochemistry analysis. In human papillary thyroid carcinoma cell line, NPA, at concentrations > or =10 microM, the A3AR-selective agonist 2-chloro-N(6)-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide (Cl-IB-MECA) produced inhibition of cell growth, by blocking the G(1) cell cycle phase in a concentration- and time-dependent manner. This effect was well correlated with a reduction of protein expression of cyclins D1 and E2 after 24 hours of Cl-IB-MECA treatment. Moreover Cl-IB-MECA induced dephosphorylation of ERK1/2 in a time- and concentration-dependent manner, which in turn inhibits cell proliferation. The effect of Cl-IB-MECA was not prevented by A3AR antagonists, MRS1191 or MRS1523 or FA385. Furthermore, neither nucleoside transporter inhibitors, Dypiridamole and NBTI, nor the A1, A2A and A2B receptors antagonists were able to block the response to Cl-IB-MECA. Although Cl-IB-MECA has been shown to influence cell death and survival in other systems through an A3AR-mediated mechanism, in NPA cells the growth inhibition induced by micromolar concentrations of Cl-IB-MECA is not related to A3AR activation and hence that its effects on human papillary carcinoma cell line seem to be independent of the presence of this receptor subtype

    Detection of high mobility group A2 specific mRNA in the plasma of patients affected by epithelial ovarian cancer

    Get PDF
    Ovarian cancer is the most lethal gynecological malignancy and the high mortality rate is associated with advanced-stage disease at the time of the diagnosis. In order to find new tools to make diagnosis of Epithelial Ovarian Cancer (EOC) at early stages we have analyzed the presence of specific HMGA2 mRNA in the plasma of patients affected by this neoplasm. HMGA2 overexpression represents a feature of several malignances including ovarian carcinomas. Notably, we detected HMGA2 specific mRNA in the plasma of 40 out 47 patients with EOC, but not in the plasma of healthy donors. All cases found positive for HMGA2 mRNA in the plasma showed HMGA2 protein expression in EOC tissues. Therefore, on the basis of these results, the analysis of circulating HMGA2 specific mRNA might be considered a very promising tool for the early diagnosis of EOC

    FRA-1 protein overexpression is a feature of hyperplastic and neoplastic breast disorders

    Get PDF
    BACKGROUND: Fos-related antigen 1 (FRA-1) is an immediate early gene encoding a member of AP-1 family of transcription factors involved in cell proliferation, differentiation, apoptosis, and other biological processes. fra-1 gene overexpression has an important role in the process of cellular transformation, and our previous studies suggest FRA-1 protein detection as a useful tool for the diagnosis of thyroid neoplasias. Here we investigate the expression of the FRA-1 protein in benign and malignant breast tissues by immunohistochemistry, Western blot, RT-PCR and qPCR analysis, to evaluate its possible help in the diagnosis and prognosis of breast neoplastic diseases. METHODS: We investigate the expression of the FRA-1 protein in 70 breast carcinomas and 30 benign breast diseases by immunohistochemistry, Western blot, RT-PCR and qPCR analysis. RESULTS: FRA-1 protein was present in all of the carcinoma samples with an intense staining in the nucleus. Positive staining was also found in most of fibroadenomas, but in this case the staining was present both in the nucleus and cytoplasm, and the number of positive cells was lower than in carcinomas. Similar results were obtained from the analysis of breast hyperplasias, with no differences in FRA-1 expression level between typical and atypical breast lesions; however the FRA-1 protein localization is mainly nuclear in the atypical hyperplasias. In situ breast carcinomas showed a pattern of FRA-1 protein expression very similar to that observed in atypical hyperplasias. Conversely, no FRA-1 protein was detectable in 6 normal breast tissue samples used as controls. RT-PCR and qPCR analysis confirmed these results. Similar results were obtained analysing FRA-1 expression in fine needle aspiration biopsy (FNAB) samples. CONCLUSION: The data shown here suggest that FRA-1 expression, including its intracellular localization, may be considered a useful marker for hyperplastic and neoplastic proliferative breast disorders

    Loss of one or two PATZ1 alleles has a critical role in the progression of thyroid carcinomas induced by the RET/PTC1 oncogene

    No full text
    POZ/BTB and AT-hook-containing zinc finger protein 1 (PATZ1) is an emerging cancer-related gene that is downregulated in different human malignancies, including thyroid cancer, where its levels gradually decrease going from papillary thyroid carcinomas (PTC) to poorly differentiated and undifferentiated highly aggressive anaplastic carcinomas (ATC). The restoration of PATZ1 expression in thyroid cancer cells reverted their malignant phenotype by inducing mesenchymal-to-epithelial transition, thus validating a tumor suppressor role for PATZ1 and suggesting its involvement in thyroid cancer progression. Here, we investigated the consequences of the homozygous and heterozygous loss of PATZ1 in the context of a mouse modeling of PTC, represented by mice carrying the RET/PTC1 oncogene under the thyroid specific control of the thyroglobulin promoter RET/PTC1 (RET/PTC1TG). The phenotypic analysis of RET/PTC1TG mice intercrossed with Patz1-knockout mice revealed that deficiency of both Patz1 alleles enhanced thyroid cancer incidence in RET/PTC1TG mice, but not the heterozygous knockout of the Patz1 gene. However, both RET/PTC1TG;Patz1+/- and RET/PTC1TG;Patz1-/- mice developed a more aggressive thyroid cancer phenotype-characterized by higher Ki-67 expression, presence of ATCs, and increased incidence of solid variants of PTC-than that shown by RET/PTC1TG; Patz1+/+ compound mice. These results confirm that PATZ1 downregulation has a critical role in thyroid carcinogenesis, showing that it cooperates with RET/PTC1 in thyroid cancer progression

    CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients

    No full text
    A neoadjuvant clinical trial was previously conducted in patients with resectable colorectal cancer liver metastases (CRLM). At a median follow up of 28 months, 20/33 patients were dead of disease, 8 were alive with disease and 5 were alive with no evidence of disease. To shed further insight into biological features accounting for different outcomes, the expression of CXCR4-CXCL12-CXCR7, TLR2-TLR4, and the programmed death receptor-1 (PD-1)/programmed death-1 ligand (PD-L1) was evaluated in excised liver metastases. Expression profiles were assessed through qPCR in metastatic and unaffected liver tissue of 33 CRLM neoadjuvant-treated patients. CXCR4 and CXCR7, TLR2/TLR4, and PD-1/PD-L1 mRNA were significantly overexpressed in metastatic compared to unaffected liver tissues. CXCR4 protein was negative/low in 10/31, and high in 21/31, CXCR7 was negative/low in 16/31 and high in 15/31, CXCL12 was negative/low in 14/31 and high in 17/31 CRLM. PD-1 was negative in 19/30 and positive in 11/30, PD-L1 was negative/low in 24/30 and high in 6/30 CRLM. Stromal PD-L1 expression, affected the progression-free survival (PFS) in the CRLM population. Patients overexpressing CXCR4 experienced a worse PFS and cancer specific survival (CSS) (p = 0.001 and p = 0.0008); in these patients, KRAS mutation identified a subgroup with a significantly worse CSS (p < 0.01). Thus, CXCR4 and PD-L1 expression discriminate patients with the worse PFS within the CRLM evaluated patients. Within the CXCR4 high expressing patients carrying Mut-KRAS in CRLM identifies the worst prognostic group. Thus, CXCR4 targeting plus anti-PD-1 therapy should be explored to improve the prognosis of Mut-KRAS-high CXCR4-CRLMs
    corecore