6 research outputs found

    Quantification of Hepatic Organic Anion Transport Proteins OAT2 and OAT7 in Human Liver Tissue and Primary Hepatocytes

    No full text
    Organic anion transporter (OAT) 2 and OAT7 were recently shown to be involved in the hepatic uptake of drugs; however, there is limited understanding of the population variability in the expression of these transporters in liver. There is also a need to derive relative expression-based scaling factors (REFs) that can be used to bridge in vitro functional data to the in vivo drug disposition. To this end, we quantified OAT2 and OAT7 surrogate peptide abundance in a large number of human liver tissue samples (<i>n</i> = 52), as well as several single-donor cryopreserved human hepatocyte lots (<i>n</i> = 30) by a novel, validated liquid chromatography tandem mass spectrometry (LCā€“MS/MS) method. The average surrogate peptide expression of OAT2 and OAT7 in the liver samples was 1.52 Ā± 0.57 and 4.63 Ā± 1.58 fmol/Ī¼g membrane protein, respectively. While we noted statistically significant differences (<i>p</i> < 0.05) in hepatocyte and liver tissue abundances for both OAT2 and OAT7, the differences were relatively small (1.8- and 1.5-fold difference in median values, respectively). Large interindividual variability was noted in the hepatic expression of OAT2 (16-fold in liver tissue and 23-fold in hepatocytes). OAT7, on the other hand, showed less interindividual variability (4-fold) in the livers, but high variability for the hepatocyte lots (27-fold). A significant positive correlation in OAT2 and OAT7 expression was observed, but expression levels were neither associated with age nor sex. In conclusion, our data suggest marked interindividual variability in the hepatic expression of OAT2/7, which may contribute to the pharmacokinetic variability of their substrates. Because both transporters were less abundant in hepatocytes than livers, a REF-based approach is recommended when scaling in vitro hepatocyte transport data to predict hepatic drug clearance and liver exposure of OAT2/7 substrates

    Hepatic Disposition of Gemfibrozil and Its Major Metabolite Gemfibrozil 1ā€‘<i>O</i>ā€‘Ī²-Glucuronide

    No full text
    Gemfibrozil (GEM), which decreases serum triglycerides and low density lipoprotein, perpetrates drugā€“drug interactions (DDIs) with several drugs. These DDIs are primarily attributed to the inhibition of drug transporters and metabolic enzymes, particularly cytochrome P450 (CYP) 2C8 by the major circulating metabolite gemfibrozil 1-<i>O</i>-Ī²-glucuronide (GG). Here, we characterized the transporter-mediated hepatic disposition of GEM and GG using sandwich-cultured human hepatocytes (SCHH) and transporter-transfect systems. Significant active uptake was noted in SCHH for the metabolite. GG, but not GEM, showed substrate affinity to organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1. In SCHH, glucuronidation was characterized affinity constants (<i>K</i><sub>m</sub>) of 7.9 and 61.4 Ī¼M, and biliary excretion of GG was observed. Furthermore, GG showed active basolateral efflux from preloaded SCHH and ATP-dependent uptake into membrane vesicles overexpressing multidrug resistance-associated protein (MRP) 2, MRP3, and MRP4. A mathematical model was developed to estimate hepatic uptake and efflux kinetics of GEM and GG based on SCHH studies. Collectively, the hepatic transporters play a key role in the disposition and thus determine the local concentrations of GEM and more so for GG, which is the predominant inhibitory species against CYP2C8 and OATP1B1

    Classification of Inhibitors of Hepatic Organic Anion Transporting Polypeptides (OATPs): Influence of Protein Expression on Drugā€“Drug Interactions

    No full text
    The hepatic organic anion transporting polypeptides (OATPs) influence the pharmacokinetics of several drug classes and are involved in many clinical drugā€“drug interactions. Predicting potential interactions with OATPs is, therefore, of value. Here, we developed in vitro and in silico models for identification and prediction of specific and general inhibitors of OATP1B1, OATP1B3, and OATP2B1. The maximal transport activity (MTA) of each OATP in human liver was predicted from transport kinetics and protein quantification. We then used MTA to predict the effects of a subset of inhibitors on atorvastatin uptake in vivo. Using a data set of 225 drug-like compounds, 91 OATP inhibitors were identified. In silico models indicated that lipophilicity and polar surface area are key molecular features of OATP inhibition. MTA predictions identified OATP1B1 and OATP1B3 as major determinants of atorvastatin uptake in vivo. The relative contributions to overall hepatic uptake varied with isoform specificities of the inhibitors

    <i>In vitro</i> studies with two human organic anion transporters: OAT2 and OAT7

    No full text
    <p>1.Penciclovir, ganciclovir, creatinine, <i>para</i>-aminohippuric acid (PAH), ketoprofen, estrone 3-O-sulfate (E3S), dehydroepiandrosterone 3-O-sulfate (DHEAS) and cyclic guanosine monophosphate (cGMP) were screened as substrates of human liver organic anion transporters OAT2 and OAT7.</p> <p>2.For OAT7, high uptake ratios (versus mock transfected HEK293 cells) of 29.6 and 15.3 were obtained with E3S and DHEAS. Less robust uptake ratios (ā‰¤3.6) were evident with the other substrates. OAT2 (transcript variant 1, OAT2-tv1) presented high uptake ratios of 30, 13, āˆ¼35, āˆ¼25, 8.5 and 9 with cGMP, PAH, penciclovir, ganciclovir, creatinine and E3S, respectively. No uptake was observed with DHEAS.</p> <p>3.Although not a substrate of either transporter, ketoprofen did inhibit transfected OAT2-tv1 (IC<sub>50</sub> of 17, 22, 23, 24, 35 and 586ā€‰Ī¼M; creatinine, ganciclovir, penciclovir, cGMP, E3S and prostaglandin F2Ī±, respectively) and penciclovir uptake (IC<sub>50</sub>ā€‰=ā€‰27ā€‰ĀµM; >90% inhibition) by plated human hepatocytes (PHH).</p> <p>4.It is concluded that penciclovir and ketoprofen may serve as useful tools for the assessment of OAT2 activity in PHH. However, measurement of OAT7 activity therein will prove more challenging, as high uptake rates are evident with E3S and DHEAS only and both sulfoconjugates are known to be substrates of organic anion transporting polypeptides.</p

    A Second-Generation Oral SARS-CoVā€‘2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19

    No full text
    Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drugā€“drug interactions upon single-agent use of PF-07817883

    A Second-Generation Oral SARS-CoVā€‘2 Main Protease Inhibitor Clinical Candidate for the Treatment of COVID-19

    No full text
    Despite the record-breaking discovery, development and approval of vaccines and antiviral therapeutics such as Paxlovid, coronavirus disease 2019 (COVID-19) remained the fourth leading cause of death in the world and third highest in the United States in 2022. Here, we report the discovery and characterization of PF-07817883, a second-generation, orally bioavailable, SARS-CoV-2 main protease inhibitor with improved metabolic stability versus nirmatrelvir, the antiviral component of the ritonavir-boosted therapy Paxlovid. We demonstrate the in vitro pan-human coronavirus antiviral activity and off-target selectivity profile of PF-07817883. PF-07817883 also demonstrated oral efficacy in a mouse-adapted SARS-CoV-2 model at plasma concentrations equivalent to nirmatrelvir. The preclinical in vivo pharmacokinetics and metabolism studies in human matrices are suggestive of improved oral pharmacokinetics for PF-07817883 in humans, relative to nirmatrelvir. In vitro inhibition/induction studies against major human drug metabolizing enzymes/transporters suggest a low potential for perpetrator drugā€“drug interactions upon single-agent use of PF-07817883
    corecore