6,693 research outputs found

    Stripe phases in high-temperature superconductors

    Full text link
    Stripe phases are predicted and observed to occur in a class of strongly-correlated materials describable as doped antiferromagnets, of which the copper-oxide superconductors are the most prominent representative. The existence of stripe correlations necessitates the development of new principles for describing charge transport, and especially superconductivity, in these materials.Comment: 5 pp, 1 color eps fig., to appear as a Perspective in Proc. Natl. Acad. Sci. US

    Exact ground states and correlation functions of chain and ladder models of interacting hardcore bosons or spinless fermions

    Full text link
    By removing one empty site between two occupied sites, we map the ground states of chains of hardcore bosons and spinless fermions with infinite nearest-neighbor repulsion to ground states of chains of hardcore bosons and spinless fermions without nearest-neighbor repulsion respectively, and ultimately in terms of the one-dimensional Fermi sea. We then introduce the intervening-particle expansion, where we write correlation functions in such ground states as a systematic sum over conditional expectations, each of which can be ultimately mapped to a one-dimensional Fermi-sea expectation. Various ground-state correlation functions are calculated for the bosonic and fermionic chains with infinite nearest-neighbor repulsion, as well as for a ladder model of spinless fermions with infinite nearest-neighbor repulsion and correlated hopping in three limiting cases. We find that the decay of these correlation functions are governed by surprising power-law exponents.Comment: 20 pages, 18 figures, RevTeX4 clas

    Localized charged states and phase separation near second order phase transition

    Full text link
    Localized charged states and phase segregation are described in the framework of the phenomenological Ginzburg-Landau theory of phase transitions. The Coulomb interactions determines the charge distribution and the characteristic length of the phase separated states. The phase separation with charge segregation becomes possible because of the large dielectric constant and the small density of extra charge in the range of charge localization. The phase diagram is calculated and the energy gain of the phase separated state is estimated. The role of the Coulomb interaction is elucidated

    Superconducting Fluctuations in a Multi-Band 1D Hubbard Model

    Full text link
    A renormalization-group and bosonization approach for a multi-band Hubbard Hamiltonian in one dimension is described. Based on the limit of many bands, it is argued that this Hamiltonian with bare repulsive electron-electron interactions is scaled under specific conditions to a model in which superconducting fluctuations dominate.Comment: 12 pages + 1 fig, Revtex, Preprint - Los Alamo

    Classical Phase Fluctuations in Incommensurate Peierls Chains

    Full text link
    In the pseudogap regime of one-dimensional incommensurate Peierls systems, fluctuations of the phase of the order parameter prohibit the emergence of long-range order and generate a finite correlation length. For classical phase fluctuations, we present exact results for the average electronic density of states, the mean localization length, the electronic specific heat and the spin susceptibility at low temperatures. Our results for the susceptibility give a good fit to experimental data.Comment: 4 Revtex pages, 4 figures, submitted to Phys. Rev. Let

    Coulomb blockade in a quantum wire with long-range Coulomb interactions

    Full text link
    We study the transport through two impurities or ``barriers'' in a one-dimensional quantum wire, taking into account the long-range 1r\frac1r Coulomb interactions. We compute the temperature-dependent conductance G(T)G(T) of this system. Long-range forces lead to a dramatic increase of weak barrier potentials with decreasing temperature, even in the ``resonant'' case. The system thus always reaches a ``strong barrier'' regime in which only charge is pinned, contrary to the standard LL case. G(T)G(T) vanishes faster than any power as TT goes to zero. In particular, resonant tunneling is suppressed at zero temperature.Comment: 11 pages,1 figure, uses epsfi

    Unusual metallic phase in a chain of strongly interacting particles

    Full text link
    We consider a one-dimensional lattice model with the nearest-neighbor interaction V1V_1 and the next-nearest neighbor interaction V2V_2 with filling factor 1/2 at zero temperature. The particles are assumed to be spinless fermions or hard-core bosons. Using very simple assumptions we are able to predict the basic structure of the insulator-metal phase diagram for this model. Computations of the flux sensitivity support the main features of the proposed diagram and show that the system maintains metallic properties at arbitrarily large values of V1V_1 and V2V_2 along the line V12V2=γJV_1-2V_2=\gamma J, where JJ is the hopping amplitude, and γ1.2\gamma\approx1.2. We think that close to this line the system is a ``weak'' metal in a sense that the flux sensitivity decreases with the size of the system not exponentially but as 1/Lα1/L^\alpha with α>1\alpha>1.Comment: To appear in J. Phys. C; 9 revtex preprint pages + 4 ps figures, uuencode

    A note on density correlations in the half-filled Hubbard model

    Get PDF
    We consider density-density correlations in the one-dimensional Hubbard model at half filling. On intuitive grounds one might expect them to exhibit an exponential decay. However, as has been noted recently, this is not obvious from the Bethe Ansatz/conformal field theory (BA/CFT) approach. We show that by supplementing the BA/CFT analysis with simple symmetry arguments one can easily prove that correlations of the lattice density operators decay exponentially.Comment: 3 pages, RevTe

    Weak-coupling phase diagrams of bond-aligned and diagonal doped Hubbard ladders

    Full text link
    We study, using a perturbative renormalization group technique, the phase diagrams of bond-aligned and diagonal Hubbard ladders defined as sections of a square lattice with nearest-neighbor and next-nearest-neighbor hopping. We find that for not too large hole doping and small next-nearest-neighbor hopping the bond-aligned systems exhibit a fully spin-gapped phase while the diagonal systems remain gapless. Increasing the next-nearest-neighbor hopping typically leads to a decrease of the gap in the bond-aligned ladders, and to a transition into a gapped phase in the diagonal ladders. Embedding the ladders in an antiferromagnetic environment can lead to a reduction in the extent of the gapped phases. These findings suggest a relation between the orientation of hole-rich stripes and superconductivity as observed in LSCO.Comment: Published version. The set of RG equations in the presence of magnetization was corrected and two figures were replace

    Anisotropy in the helicity modulus of a quantum 3D XY-model: application to YBCO

    Full text link
    We present a variational study of the helicity moduli of an anisotropic quantum three-dimensional (3D) XY-model of YBCO in superconducting state. It is found that both the ab-plane and the c-axis helicity moduli, which are proportional to the inverse square of the corresponding magnetic field penetration depth, vary with temperature T as T to the fourth power in the zero temperature limit. Moreover, the c-axis helicity modulus drops with temperature much faster than the ab-plane helicity modulus because of the weaker Josephson couplings along the c-axis compared to those along the ab-plane. These findings are in disagreement with the experiments on high quality samples of YBCO.Comment: 9 pages, 1 figur
    corecore