9,934 research outputs found
Landau theory of phase separation in cuprates
I discuss the problem of phase separation in cuprates from the point of view
of the Landau theory of Fermi liquids. I calculate the rate of growth of
unstable regions for the hydrodymanics and collisionless limit and, in presence
of long range Coulomb interactions, the size of these regions. These are
analytic results valid for any strength of the Landau parameters.Comment: RevteX, preprint ITP (1994
Charged excitons in doped extended Hubbard model systems
We show that the charge transfer excitons in a Hubbard model system including
nearest neighbor Coulomb interactions effectively attain some charge in doped
systems and become visible in photoelectron and inverse photoelectron
spectroscopies. This shows that the description of a doped system by an
extended Hubbard model differs substantially from that of a simple Hubbard
model. Longer range Coulomb interactions cause satellites in the one electron
removal and addition spectra and the appearance of spectral weight if the gap
of doped systems at energies corresponding to the excitons of the undoped
systems. The spectral weight of the satellites is proportional to the doping
times the coordination number and therefore is strongly dependent on the
dimension.Comment: 10 pages revtex, 5 figures ps figures adde
Measurement of the Hyperfine Structure and Isotope Shifts of the 3s23p2 3P2 to 3s3p3 3Do3 Transition in Silicon
The hyperfine structure and isotope shifts of the 3s23p2 3P2 to 3s3p3 3Do3
transition in silicon have been measured. The transition at 221.7 nm was
studied by laser induced fluorescence in an atomic Si beam. For 29Si, the
hyperfine A constant for the 3s23p2 3P2 level was determined to be -160.1+-1.3
MHz (1 sigma error), and the A constant for the 3s3p3 3Do3 level is -532.9+-0.6
MHz. This is the first time that these constants were measured. The isotope
shifts (relative to the abundant isotope 28Si) of the transition were
determined to be 1753.3+-1.1 MHz for 29Si and 3359.9+-0.6 MHz for 30Si. This is
an improvement by about two orders of magnitude over a previous measurement.
From these results we are able to predict the hyperfine structure and isotope
shift of the radioactive 31Si atom, which is of interest in building a scalable
quantum computer
Superconductivity in the Cuo Hubbard Model with Long-Range Coulomb Repulsion
A multiband CuO Hubbard model is studied which incorporates long-range (LR)
repulsive Coulomb interactions. In the atomic limit, it is shown that a
charge-transfer from copper to oxygen ions occurs as the strength of the LR
interaction is increased. The regime of phase separation becomes unstable, and
is replaced by a uniform state with doubly occupied oxygens. As the holes
become mobile a superfluid condensate is formed, as suggested by a numerical
analysis of pairing correlation functions and flux quantization. Although most
of the calculations are carried out on one dimensional chains, it isComment: LATEX, 14 pages, 4 figures available as postcript files or hard copy,
preprint ORNL-CCIP/93/1
Classical Phase Fluctuations in High Temperature Superconductors
Phase fluctuations of the superconducting order parameter play a larger role
in the cuprates than in conventional BCS superconductors because of the low
superfluid density of a doped insulator. In this paper, we analyze an XY model
of classical phase fluctuations in the high temperature superconductors using a
low-temperature expansion and Monte Carlo simulations. In agreement with
experiment, the value of the superfluid density at temperature T=0 is a quite
robust predictor of Tc, and the evolution of the superfluid density with T,
including its T-linear behavior at low temperature, is insensitive to
microscopic details.Comment: 4 pages, 1 figur
Theory of the Resistive Transition in Overdoped : Implications for the angular dependence of the quasiparticle scattering rate in High- superconductors
We show that recent measurements of the magnetic field dependence of the
magnetization, specific heat and resistivity of overdoped
in the vicinity of the superconducting
imply that the vortex viscosity is anomalously small and that the material
studied is inhomogeneous with small, a few hundred , regions in which the
local is much higher than the bulk . The anomalously small
vortex viscosity can be derived from a microscopic model in which the
quasiparticle lifetime varies dramatically around the Fermi surface, being
small everywhere except along the zone diagonal (``cold spot''). We propose
experimental tests of our results.Comment: 4 pages, LaTex, 2 EPS figure
Millstone Hill Thomson Scatter Results for 1971
During 1971, the incoherent scatter radar at Millstone Hill (42.6°N, 71.5°W) was employed to measure the electron density, electron and ion temperatures, and the vertical velocity of the 0[superscript +] ions in the F-region over periods of 24 hours on 20 days. The observations spanned the height interval 200 to 900 km, approximately, and achieved a time resolution of about 30 minutes. This report presents these results, after smoothing as a set of machine-drawn contour plots.
The report discusses the behavior observed in 1971 in light of that seen in previous years. A significant number of days appear to have been disturbed by large traveling ionospheric disturbances. Results for the average exospheric temperature, the mean meridional, and zonal winds for 1970and 1971 derived from these incoherent scatter measurements in a separate study by B.A. Emery are summarized here for completeness. The results appear to confirm the mean wind behavior that would be predicted by the recent Mass-Spectrometer, Incoherent-Scatter (MSIS) global model for the thermosphere and support the view that interhemispheric transport of light neutral constituents (e.g., atomic oxygen) gives rise to tie anomalous seasonal behavior of the ionosphere at midlatitudes
Anisotropy in the helicity modulus of a quantum 3D XY-model: application to YBCO
We present a variational study of the helicity moduli of an anisotropic
quantum three-dimensional (3D) XY-model of YBCO in superconducting state. It is
found that both the ab-plane and the c-axis helicity moduli, which are
proportional to the inverse square of the corresponding magnetic field
penetration depth, vary with temperature T as T to the fourth power in the zero
temperature limit. Moreover, the c-axis helicity modulus drops with temperature
much faster than the ab-plane helicity modulus because of the weaker Josephson
couplings along the c-axis compared to those along the ab-plane. These findings
are in disagreement with the experiments on high quality samples of YBCO.Comment: 9 pages, 1 figur
ExploreNEOs I: Description and first results from the Warm Spitzer NEO Survey
We have begun the ExploreNEOs project in which we observe some 700 Near Earth
Objects (NEOs) at 3.6 and 4.5 microns with the Spitzer Space Telescope in its
Warm Spitzer mode. From these measurements and catalog optical photometry we
derive albedos and diameters of the observed targets. The overall goal of our
ExploreNEOs program is to study the history of near-Earth space by deriving the
physical properties of a large number of NEOs. In this paper we describe both
the scientific and technical construction of our ExploreNEOs program. We
present our observational, photometric, and thermal modeling techniques. We
present results from the first 101 targets observed in this program. We find
that the distribution of albedos in this first sample is quite broad, probably
indicating a wide range of compositions within the NEO population. Many objects
smaller than one kilometer have high albedos (>0.35), but few objects larger
than one kilometer have high albedos. This result is consistent with the idea
that these larger objects are collisionally older, and therefore possess
surfaces that are more space weathered and therefore darker, or are not subject
to other surface rejuvenating events as frequently as smaller NEOs.Comment: AJ in pres
Simple theory of extremely overdoped HTS
We demonstrate the existence of a simple physical picture of
superconductivity for extremely overdoped CuO2 planes. It possesses all
characteristic features of HTS, such as a high superconducting transition
temperature, the symmetry of order parameter, and the
coexistence of a single electron Fermi surface and a pseudogap in the normal
state. Values of pseudogap are calculated for different doping levels. An
orbital paramagnetism of preformed pairs is predicted.Comment: 7 pages, 1 figur
- …