54 research outputs found

    Scaling and the Metal-Insulator Transition in Si/SiGe Quantum Wells

    Full text link
    The existence of a metal-insulator transition at zero magnetic field in two- dimensional electron systems has recently been confirmed in high mobility Si-MOSFETs. In this work, the temperature dependence of the resistivity of gated Si/SiGe/Si quantum well structures has revealed a similar metal- insulator transition as a function of carrier density at zero magnetic field. We also report evidence for a Coulomb gap in the temperature dependence of the resistivity of the dilute 2D hole gas confined in a SiGe quantum well. In addition, the resistivity in the insulating phase scales with a single parameter, and is sample independent. These results are consistent with the occurrence of a metal-insulator transition at zero magnetic field in SiGe square quantum wells driven by strong hole-hole interactions.Comment: 3 pages, 3 figures, LaTe

    Metal Insulator transition at B=0 in p-SiGe

    Full text link
    Observations are reported of a metal-insulator transition in a 2D hole gas in asymmetrically doped strained SiGe quantum wells. The metallic phase, which appears at low temperatures in these high mobility samples, is characterised by a resistivity that decreases exponentially with decreasing temperature. This behaviour, and the duality between resistivity and conductivity on the two sides of the transition, are very similar to that recently reported for high mobility Si-MOSFETs.Comment: 4 pages, REVTEX with 3 ps figure

    Analysis of the Metallic Phase of Two-Dimensional Holes in SiGe in Terms of Temperature Dependent Screening

    Full text link
    We find that temperature dependent screening can quantitatively explain the metallic behaviour of the resistivity on the metallic side of the so-called metal-insulator transition in p-SiGe. Interference and interaction effects exhibit the usual insulating behaviour which is expected to overpower the metallic background at sufficiently low temperatures. We find empirically that the concept of a Fermi-liquid describes our data in spite of the large r_s = 8.Comment: 4 pages, 3 figure
    • …
    corecore