156 research outputs found

    Structure of human NMN adenylyltransferase. A key nuclear enzyme for NAD homeostasis.

    Get PDF
    Abstract Nicotinamide mononucleotide adenylyltransferase (NMNAT), a member of the nucleotidyltransferase α/β-phosphodiesterases superfamily, catalyzes a universal step (NMN + ATP = NAD + PPi) in NAD biosynthesis. Localized within the nucleus, the activity of the human enzyme is greatly altered in tumor cells, rendering it a promising target for cancer chemotherapy. By using a combination of single isomorphous replacement and density modification techniques, the human NMNAT structure was solved by x-ray crystallography to a 2.5-A resolution, revealing a hexamer that is composed of α/β-topology subunits. The active site topology of the enzyme, analyzed through homology modeling and structural comparison with other NMNATs, yielded convincing evidence for a substrate-induced conformational change. We also observed remarkable structural conservation in the ATP-recognition motifs GXXXPX(T/H)XXH and SXTXXR, which we take to be the universal signature for NMNATs. Structural comparison of human and prokaryotic NMNATs may also lead to the rational design of highly selective antimicrobial drugs

    Placental thrombomodulin expression in recurrent miscarriage

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Early pregnancy loss can be associated with trophoblast insufficiency and coagulation defects. Thrombomodulin is an endothelial-associated anticoagulant protein involved in the control of hemostasis and inflammation at the vascular beds and it's also a cofactor of the protein C anticoagulant pathway.</p> <p>Discussion</p> <p>We evaluate the Thrombomodulin expression in placental tissue from spontaneous recurrent miscarriage and voluntary abortion as controls. Thrombomodulin mRNA was determined using real-time quantitative polymerase chain reaction. Reduced expression levels of thrombomodulin were found in recurrent miscarriage group compared to controls (1.82-fold of reduction), that corresponds to a reduction of 45% (from control group Delta CT) of thrombomodulin expression in spontaneous miscarriage group respect the control groups.</p> <p>Summary</p> <p>We cannot state at present the exact meaning of a reduced expression of Thrombomodulin in placental tissue. Further studies are needed to elucidate the biological pathway of this important factor in the physiopathology of the trophoblast and in reproductive biology.</p

    Identification and Characterization of Cancer Stem Cells from Head and Neck Squamous Cell Carcinoma Cell Lines

    Get PDF
    Background/Aims: Head and neck squamous cell carcinoma (HNSCC) ranks sixth worldwide for tumor-related mortality. A subpopulation of tumor cells, termed cancer stem cells (CSCs), has the ability to support cancer growth. Therefore, profiling CSC-enriched populations could be a reliable tool to study cancer biology. Methods: We performed phenotypic characterization of 7 HNSCC cell lines and evaluated the presence of CSCs. CSCs from Hep-2 cell line and HNSCC primary cultures were enriched through sphere formation and sphere-forming cells have been characterized both in vitro and in vivo. In addition, we investigated the expression levels of Nicotinamide N-methyltransferase (NNMT), an enzyme overexpressed in several malignancies. Results: CSC markers were markedly expressed in Hep-2 cell line, which was found to be highly tumorigenic. CSC-enriched populations displayed increased expression of CSC markers and a strong capability to form tumors in vivo. We also found an overexpression of CSC markers in tumor formed by CSC-enriched populations. Interestingly, NNMT levels were significantly higher in CSC-enriched populations compared with parental cells. Conclusion: Our study provides an useful procedure for CSC identification and enrichment in HNSCC. Moreover, results obtained seem to suggest that CSCs may represent a promising target for an anticancer therapy

    Nicotinamide N-methyltransferase catalyses the N-methylation of the endogenous ß-carboline norharman: evidence for a novel detoxification pathway

    Get PDF
    Nicotinamide N-methyltransferase (NNMT) is responsible for the N-methylation of nicotinamide to 1-methylnicotinamide. Our recent studies have demonstrated that NNMT regulates cellular processes fundamental to the correct functioning and survival of the cell. It has been proposed that NNMT may possess β-carboline (BC) N-methyltransferase activity, endogenously and exogenously produced pyridine-containing compounds which, when N-methylated, are potent inhibitors of Complex I and have been proposed to have a role in the pathogenesis of Parkinson's disease. We have investigated the ability of recombinant NNMT to N-methylate norharman (NH) to 2-N-methylnorharman (MeNH). In addition, we have investigated the toxicity of the BC NH, its precursor 1,2,3,4-tetrahydronorharman (THNH) and its N-methylated metabolite MeNH, using our in vitro SH-SY5Y NNMT expression model. Recombinant NNMT demonstrated NH 2N-methyltransferase activity, with a Km of 90 ± 20 µM, a kcat of 3 × 10(-4) ± 2 × 10(-5) s(-1) and a specificity constant (kcat/Km) of 3 ± 1 s(-1) M(-1) THNH was the least toxic of all three compounds investigated, whereas NH demonstrated the greatest, with no difference observed in terms of cell viability and cell death between NNMT-expressing and non-expressing cells. In NNMT-expressing cells, MeNH increased cell viability and cellular ATP concentration in a dose-dependent manner after 72 and 120 h incubation, an effect that was not observed after 24 h incubation or in non-NNNT-expressing cells at any time point. Taken together, these results suggest that NNMT may be a detoxification pathway for BCs such as NH

    Inhibitors of nicotinamide:N -methyltransferase designed to mimic the methylation reaction transition state

    Get PDF
    Nicotinamide N-methyltransferase (NNMT) is an enzyme that catalyses the methylation of nicotinamide to form N'-methylnicotinamide. Both NNMT and its methylated product have recently been linked to a variety of diseases, suggesting a role for the enzyme as a therapeutic target beyond its previously ascribed metabolic function in detoxification. We here describe the systematic development of NNMT inhibitors derived from the structures of the substrates involved in the methylation reaction. By covalently linking fragments of the NNMT substrates a diverse library of bisubstrate-like compounds was prepared. The ability of these compounds to inhibit NNMT was evaluated providing valuable insights into the structural tolerances of the enzyme active site. These studies led to the identification of new NNMT inhibitors that mimic the transition state of the methylation reaction and inhibit the enzyme with activity on par with established methyltransferase inhibitors

    Association of MiR-126 with Soluble Mesothelin-Related Peptides, a Marker for Malignant Mesothelioma

    Get PDF
    BACKGROUND: Improved detection methods for diagnosis of malignant pleural mesothelioma (MPM) are essential for early and reliable detection as well as treatment. Since recent data point to abnormal levels of microRNAs (miRNAs) in tumors, we hypothesized that a profile of deregulated miRNAs may be a marker of MPM and that the levels of specific miRNAs may be used for monitoring its progress. METHODS AND RESULTS: miRNAs isolated from fresh-frozen biopsies of MPM patients were tested for the expression of 88 types of miRNA involved in cancerogenesis. Most of the tested miRNAs were downregulated in the malignant tissues compared with the normal tissues. Of eight significantly downregulated, three miRNAs were assayed in cancerous tissue and adjacent non-cancerous tissue sample pairs collected from 27 formalin-fixed, paraffin-embedded MPM tissues by quantitative RT-PCR. Among the miRNAs tested, only miR-126 significantly remained downregulated in the malignant tissues. Furthermore, the performance of the selected miR-126 as biomarker was evaluated in serum samples of asbestos-exposed subjects and MPM patients and compared with controls. MiR-126 was not affected by asbestos exposure, whereas it was found strongly associated with VEGF serum levels. Levels of miR-126 in serum, and its levels in patients' serum in association with a specific marker of MPM, SMRPs, correlate with subjects at high risk to develop MPM. CONCLUSIONS AND SIGNIFICANCE: We propose miR-126, in association with SMRPs, as a marker for early detection of MPM. The identification of tumor biomarkers used alone or, in particular, in combination could greatly facilitate the surveillance procedure for cohorts of subjects exposed to asbestos

    Nicotinamide N-Methyltransferase as Promising Tool for Management of Gastrointestinal Neoplasms

    No full text
    Gastrointestinal (GI) neoplasms include esophageal, gastric, colorectal, hepatic, and pancreatic cancers. They are characterized by asymptomatic behavior, being responsible for diagnostic delay. Substantial refractoriness to chemo- and radiotherapy, exhibited by late-stage tumors, contribute to determine poor patient outcome. Therefore, it is of outmost importance to identify new molecular targets for the development of effective therapeutic strategies. In this study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT), which catalyzes the N-methylation reaction of nicotinamide and whose overexpression has been reported in numerous neoplasms, including GI cancers. The aim of this review was to report data illustrating NNMT involvement in these tumors, highlighting its contribution to tumor cell phenotype. Cited works clearly demonstrate the interesting potential use of enzyme level determination for both diagnostic and prognostic purposes. NNMT was also found to positively affect cell viability, proliferation, migration, and invasiveness, contributing to sustain in vitro and in vivo tumor growth and metastatic spread. Moreover, enzyme upregulation featuring tumor cells was significantly associated with enhancement of resistance to treatment with chemotherapeutic drugs. Taken together, these results strongly suggest the possibility to target NNMT for setup of molecular-based strategies to effectively treat GI cancers
    • …
    corecore