5,507 research outputs found

    Models of rotating coronae

    Full text link
    Fitting equilibrium dynamical models to observational data is an essential step in understanding the structure of the gaseous hot haloes that surround our own and other galaxies. However, the two main categories of models that are used in the literature are poorly suited for this task: (i) simple barotropic models are analytic and can therefore be adjusted to match the observations, but are clearly unrealistic because the rotational velocity vϕ(R,z)v_\phi(R,z) does not depend on the distance zz from the galactic plane, while (ii) models obtained as a result of cosmological galaxy formation simulations are more realistic, but are impractical to fit to observations due to high computational cost. Here we bridge this gap by presenting a general method to construct axisymmetric baroclinic equilibrium models of rotating galactic coronae in arbitrary external potentials. We consider in particular a family of models whose equipressure surfaces in the (R,z)(R,z) plane are ellipses of varying axis ratio. These models are defined by two one-dimensional functions, the axial ratio of pressure qaxis(z)q_{\rm axis}(z) and the value of the pressure Paxis(z)P_{\rm axis}(z) along the galaxy's symmetry axis. These models can have a rotation speed vϕ(R,z)v_\phi(R,z) that realistically decreases as one moves away from the galactic plane, and can reproduce the angular momentum distribution found in cosmological simulations. The models are computationally cheap to construct and can thus be used in fitting algorithms. We provide a python code that given qaxis(z)q_{\rm axis}(z), Paxis(z)P_{\rm axis}(z) and Φ(R,z)\Phi(R,z) returns ρ(R,z)\rho(R,z), T(R,z)T(R,z), P(R,z)P(R,z), vϕ(R,z)v_\phi(R,z). We show a few examples of these models using the Milky Way as a case study.Comment: Accepted for publication in MNRA

    Dynamics in the Fitness-Income plane: Brazilian states vs World countries

    Get PDF
    In this paper we introduce a novel algorithm, called Exogenous Fitness, to calculate the Fitness of subnational entities and we apply it to the states of Brazil. In the last decade, several indices were introduced to measure the competitiveness of countries by looking at the complexity of their export basket. Tacchella et al (2012) developed a non-monetary metric called Fitness. In this paper, after an overview about Brazil as a whole and the comparison with the other BRIC countries, we introduce a new methodology based on the Fitness algorithm, called Exogenous Fitness. Combining the results with the Gross Domestic Product per capita (GDPp), we look at the dynamics of the Brazilian states in the Fitness-Income plane. Two regimes are distinguishable: one with high predictability and the other with low predictability, showing a deep analogy with the heterogeneous dynamics of the World countries. Furthermore, we compare the ranking of the Brazilian states according to the Exogenous Fitness with the ranking obtained through two other techniques, namely Endogenous Fitness and Economic Complexity Index

    Periodicity makes galactic shocks unstable - I. Linear analysis

    Full text link
    We study the dynamical stability of stationary galactic spiral shocks. The steady-state equilibrium flow contains a shock of the type derived by Roberts in the tightly wound approximation. We find that boundary conditions are critical in determining whether the solutions are stable or not. Shocks are unstable if periodic boundary conditions are imposed. For intermediate strengths of the spiral potential, the instability disappears if boundary conditions are imposed such that the upstream flow is left unperturbed as in the classic analysis of D'yakov and Kontorovich. This reconciles apparently contradictory findings of previous authors regarding the stability of spiral shocks. This also shows that the instability is distinct from the Kelvin-Helmholtz instability, confirming the findings of Kim et al. We suggest that instability is a general characteristics of periodic shocks, regardless of the presence of shear, and provide a physical picture as to why this is the case. For strong spiral potentials, high post-shock shear makes the system unstable also to parasitic Kelvin-Helmholtz instability regardless of the boundary conditions. Our analysis is performed in the context of a simplified problem that, while preserving all the important characteristics of the original problem, strips it from unnecessary complications, and assumes that the gas is isothermal, non self-gravitating, non-magnetised.Comment: Accepted for publication in MNRA

    Black holes in the low mass gap: Implications for gravitational wave observations

    Get PDF
    Binary neutron-star mergers will predominantly produce black-hole remnants of mass 34M\sim 3-4\,M_{\odot}, thus populating the putative \emph{low mass gap} between neutron stars and stellar-mass black holes. If these low-mass black holes are in dense astrophysical environments, mass segregation could lead to "second-generation" compact binaries merging within a Hubble time. In this paper, we investigate possible signatures of such low-mass compact binary mergers in gravitational-wave observations. We show that this unique population of objects, if present, will be uncovered by the third-generation gravitational-wave detectors, such as Cosmic Explorer and Einstein Telescope. Future joint measurements of chirp mass M{\cal M} and effective spin χeff\chi_{\rm eff} could clarify the formation scenario of compact objects in the low mass gap. As a case study, we show that the recent detection of GW190425 (along with GW170817) favors a double Gaussian mass model for neutron stars, under the assumption that the primary in GW190425 is a black hole formed from a previous binary neutron star merger.Comment: 8 pages, 4 figures, 1 table. v4: matches the version accepted for publication in Phys. Rev.

    Distinguishing double neutron star from neutron star-black hole binary populations with gravitational wave observations

    Get PDF
    Gravitational waves from the merger of two neutron stars cannot be easily distinguished from those produced by a comparable-mass mixed binary in which one of the companions is a black hole. Low-mass black holes are interesting because they could form in the aftermath of the coalescence of two neutron stars, from the collapse of massive stars, from matter overdensities in the primordial Universe, or as the outcome of the interaction between neutron stars and dark matter. Gravitational waves carry the imprint of the internal composition of neutron stars via the so-called tidal deformability parameter, which depends on the stellar equation of state and is equal to zero for black holes. We present a new data analysis strategy powered by Bayesian inference and machine learning to identify mixed binaries, hence low-mass black holes, using the distribution of the tidal deformability parameter inferred from gravitational-wave observations.Comment: 13 pages, 6 figures - v2: matches the published version in Phys. Rev. D 102, 02302

    Iginio Tansini revisited

    Get PDF
    The origin of the muscolocutaneous latissimus dorsi flap dates back to 1906 when Igino Tansini, an Italian surgeon, described a procedure to reconstruct the mastectomy defect. After a detailed study of Tansini's original description and drawings, new insights about the pedicle of its compound flap have been found, showing that it has the same pedicle of the scapular flap. In the end, Tansini's flap should be more correctly considered as a compound musculocutaneous scapular flap

    Syntactic characterization in Lisp of the polynomial complexity classes and hierarchy

    Get PDF
    The definition of a class C of functions is syntactic if membership to C can be decided from the construction of its elements. Syntactic characterizations of PTIMEF, of PSPACEF, of the polynomial hierarchy PH, and of its subclasses Delta^p_n are presented. They are obtained by progressive restrictions of recursion in Lisp, and may be regarded as predicative according to a foundational point raised by Leivant
    corecore