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Abstract� The de�nition of a class C of functions is syntactic if member�
ship to C can be decided from the construction of its elements� Syntactic
characterizations of PTIMEF� of PSPACEF� of the polynomial hierar�
chy PH� and of its subclasses �p

n are presented� They are obtained by
progressive restrictions of recursion in Lisp� and may be regarded as
predicative according to a foundational point raised by Leivant�

� Introduction

At least since ���� ��� people think to complexity in terms of TM�s plus clock or
meter	 However� understanding a complexity class may be easier if we de
ne it by
means of operators instead of resources	 Di�erent forms of limited recursion have
been used to this purpose	 After the well�known characterizations of Linspacef
���� and Ptimef ���� further work in this direction has been produced see� for
example� ����� ���� ����	

Both approaches resources and limited operators� are not syntactic� in the
sense that membership to a given class cannot be decided from the construction
of its elements for example� if f is primitive recursive PR� in g and h� we
cannot decide whether f is actually bounded above by a third function k�	 And
both approaches may be criticized on foundational grounds	 The de
nition of
an entity E is impredicative see Poincar�e ����� p	 ���� if it uses a variable
de
ned on a domain including E	 Examples of impredicative de
nitions arep
� �df max zz� � �� and Powx� �df fyjy � xg	 The de
nition of� say�

Ptimef� by means of the predicative� class of all T�computable functions� might
be regarded as impredicative too	 For a better position of the problem� and for
a remarkable solution in proof�theoretic terms� see Leivant ���	

The 
rst purely syntactic de
nition of Ptimef� based on a form of unlimited
PR on binary numerals is in ���	 Further characterizations of the same class are
in ���� and ����� using 
nite automata and� respectively� ��calculus	 A syntactic
de
nition of Ptimef and Lintimef� by a tortuous variant of TM�s� is in ���	
Pspacef has been studied less	 We are not aware of any recursive characteriza�
tion even impredicative� of the polynomial hierarchy PH	



In this paper we de
ne a number of fragments of Lisp� by means of a progres�
sive sequence of restrictions to unlimited� recursion� and we show the equiva�
lence between these fragments and the polynomial classes	 Lisp has been chosen�
instead of other models of computation� because it o�ers the obvious advantages
of a richer data type and of a higher�level language� and because it 
ts tradi�
tional mathematical methods of investigation� like induction on the construction
of functions and arguments	 A preliminary validation of this choice is discussed
in the last section of this paper� together with perspectives and other aspects of
our work	

We now outline the adopted recursion schemes	 A function f �x� y� is de
ned
by course�of�values recursion if its value depends on a pre�assigned number n
of values f �x� yi� for n previous values of y	 What makes the di�erence is the
meaning of previous	 For Pspacef and PH we mean any z such that jzj � jyj
that is we may choose n values among O�cjyj� previous values�	 For Ptimef we
mean any subexpression of y n among Ojyj� values�	 The restriction of Pspace
to PH is obtained by asking that the invariant function of the recursion be in
the form f �x� y�� or � � � or f �x� yn�	 Classes �k are de
ned by counting in the
most obvious way the levels of nesting of this form of recursion	

A rather extreme formulation of an aspect of the work presented here is that
it allows a position of some celebrated problems in terms of comparison between
similar operators� of an apparently increasing strength� instead than in terms of
contrast between heterogeneous resources	

� Recursion Free Lisp

An atom is a sequence of capital letters and decimal digits	 A special role is
assigned to atoms T F �� associated with the truth�values true �false�� and NIL	
An S��expression is an atom� or a dotted couple x � y�� where x and y are
expressions	 �� ��� � � � are variables de
ned on the� atoms� s� � � � � z� s�� � � � are S�
expressions	 s� � � � � z are tuples of expressions of the form x�� � � � �xn n � ��	 An
�S��function f takes a tuple of arguments x into an expression f �x�� d� e� f� g� h
are functions� and d�d � � � � are tuples of functions	 If a tuple of syntactical
entities has been introduced by means of a notation of the form E� we denote
by Ei its i�th member for example xi� z

j
i are the i�th expression of x� z j � and

f
j
i is the i�th function of f j�	
A list is an expression of the particular form we now describe� atom NIL is

the empty list� also denoted by �� all other lists x are in the form xn � � � � � x� �
NIL� � � ��� and are shown as xn� � � � � x��� x�i � xi is the i�th component of x�
and �x� � n � � is its number of components	

Sometimes� along a computation� we mark an occurrence of an� expression
x by a superscript � � A�B�AB� and we say that x� is of type � � when x has
not been marked� we say that it is of type �� and we write x�	 Thus marked S�
expressions are the actual constants of our language	� The type of all atoms is �	
The type of all non�atomic sub�expressions of x� is � 	 A relation of compatibility
is established by stating that�



�	 all expressions are compatible with those of type ��
�	 all expressions of type � �� � are incompatible with those of their same type

� and with those of type AB	

x � x ��� � is a tuple of variables of the same type � of type �� ��	 Types are
not speci
ed in the de
nition of a function� when they don�t change cf	 �	�	��
or when they don�t a�ect the result cf	 �	�	��	

��� Basic functions

The class B of the basic functions consists of�

�	 predicates at and eq� such that at�x� � T F � if x is not� an atom� and
eq�x� y� � T F � if x and y are not� the same atom�

�	 the conditional cond�x� y� z� � y if x � T � and � z if x �� T � cond�x�� y�� � � � �
cond�xn� yn� z� � � �� is usually displayed as �x� � y�� � � � �xn � yn�T � z�	

�	 the selectors selnj �x� � xj � and� for every atom �� the constant functions
��x� � �� we often let these functions be denoted by their results� id is the
identity sel���

�	 the predecessors car and cdr� such that� car��� � cdr��� � �� car�y � z�� � y

and cdr�y � z�� � z� sometimes we write x� for car�x� and x�� for cdr�x��
�	 the constructor

cons�x�� � y�� ��

����
���

NIL�AB if the arguments are incompatible
x � y�� if both �i are �
x � y�� if one of the �i is � and the other is �
x � y�AB if one of the �i is A and the other is B�

�	 functions 	� 
� �� which leave un�changed the atoms� and such� otherwise�
that 	�x�� � xA� 
�x�� � xB � 	�x���� � 
�x���� �NIL� ��x� � � x��

�	 function unite� which leaves its argument x un�changed if x� or x�� are not
lists� and takes x�� � � � � xm�� xm��� � � � � xm�n� into x�� � � � � xm�n� other�
wise� for example unite�A�B�C�� D�E�� � A�B�C�D�E�	

These basic functions di�er from those of pure Lisp for a few changes� adopted
to handle the types and to exclude marginal cases of unde
ned functions	

��� Substitutions

By a composite notation like f �x�� we mean that all arguments of f occur not
necessarily once� in x� but we don�t imply that every xi is an actual argument
of f 	

A main di�erence with pure Lisp is that we renounce to its ��s to show
substitutions SBST� explicitly� by replacing the substituted variable with the
substituend function	 This rudimental way allows simpler de
nitions and space�
complexity evaluations� at the price of a systematic ambiguity between functions
and values	 Thus� deciding for example whether car�x� and car�y� are the same
thing is left to context	 A SBST to an absent variable has no e�ect� all occurrences



of the substituted variable are replaced by the substituend function	 No kind of
disjunction between original and new variables is assumed	

We write f �x� for f��x�� � � � � fn�x�	 Given n functions h�u�� and given g�x� z��
we write g�x�h�u�� for the simultaneous SBST of h�u� to the n variables z in g	
The special form of substitution we now introduce allows to by�pass the type�
restrictions on the cons�s one should otherwise handle� in order to re�assemble
the parts of the argument� after processing them separately	

De�nition �� The unary function f is de
ned by internal substitution IN�
SBST� in g�� � � � � gk if we have

f �x� �

�
NIL if �x� � k

g��x���� � � � � gk�x�k �� x�k��� � � � � x��	x
� otherwise�

or �
f ��� � NIL

f �u � w�� � g��u� � g��w���
Notation� f � �g�	 Functions g are the scope of the INSBST	

Given a class C of functions� we denote by C� its closure under SBST and
INSBST	 For example� the class of all recursion�free functions is B�	

��� Lengths

The length jzj of z is the number of atoms and dots occurring in the value
assigned to� z	 jxj and maxx� are respectively

P
i jxij and maxijxij�	

jf �x�j is the length of the value of f �x� when a system of values is assigned to
x� jf �x�j is Pi jfi�x�j	 For example jcons�x�x�j � �jxj� �� jy��j � max�� jyj � ��	
We say that f �x� is limited by the numerical function  possibly a constant� if
for all x we have jf �x�j � jxj�	

De
ne lhcf� to be �n� �� where n is the number of cons occurring in the
construction of f 	

The idea of next lemma is rather simple� types allow cobbling together� with�
out any limitation� the arguments of type �� but at most one A and�or one B
may contribute to the function being computed	

Lemma�� For all recursion�free function f in which � doesn�t occur� we have

jf �x �� s �A� s �B �j � lhcf�max�� jxj� � maxs �� � maxs ���

Proof� Let us write m for lhcf�max�� jxj�� and Mi for maxs i�	 We show that
z� � f �x� s �� s �� implies jzj � m� n� where�

� � � case �� implies n � ��
� � A � � B� case �� implies n �M� n �M��� and
� � AB case �� implies n �M� �M�	

Induction on the construction of f 	 Base	 Assume that f is cons� since else the
result is trivial	 We have� for example� jcons�tA� tB �j � �jtAB j�� � ���jtj	 Etc	



Step	 �� Let us 
rst assume that f begins by a basic function	 Then we may
assume further that the form of f is cons�g��x� s

�A� s �B �� g��x� s
�A� s �B ��� since

the lemma is an immediate consequence of the ind	 hyp	 for all other basic
functions	 Let gi�x� s

�� s �� � z�ii � i � �� �� thus z� � cons�z�� z��	 Let us write
mi for lhcgi�max�� jxj� Cases ��� as above	
Case �	 We have �� � �� � � The ind	 hyp	 gives jzij � mi	 The result follows�
since lhcf� � lhcg�� � lhcg�� � �	
Case �	 We have � � A or � � B� one of the �i is � � and the other is �� let for
example �� � B	 The ind	 hyp	 gives jg�j � m� �M�� jg�j � m�	 The result
follows by immediate computations	
Subcase �	�	 One of the �i� say ��� is A� and the other is B	 The ind	 hyp	 gives
jzij � mi �Mi and the result follows immediately� since m� �m� � m	
Subcase �	�	 One of the �i is AB� and the other is �	 Similarly	
�� The possibility remains that the form of f is �g�� � � � � gk��h�x� s

�� s ���	 Let
h�� � �� � y� 	 Assume �y� � k	 Case �	 � �� �	 Then� since all components of y
are of the same type � � the ind	 hyp	 gives jf j �Pijy�ij� lhcgi�� � k � � �
jyj �Pilhcgi��� and the result follows by the ind	 hyp	 applied to h� since
lhcf� � lhch� �

P
i lhcgi�	 Case �	 � � �	 Immediately from the ind	 hyp	�

applied to h and to the g�s	

��� Some classes of recursion�free functions

�� A proper cut of order n is a composition of n � � predecessors	 We regard the
identity as an improper cut of order �	 Two cuts g�� g� are disjoint if they don�t
return two overlapping sub�expressions of their argument	 In syntactic terms�
the g�s are disjoint if for no gi there is a cut h� such that gi�x� � h�g��i�x��	 A
fully disjoint tuple �of cuts� C is a tuple e� such that� a� every ei is either a
cut gi� or is in the form �h i�� where every hij is a cut� and b� all couples

gi� h
i
j are disjoint	
De
ne the cuts �st� �d� �d� � � � �i�th� such that i � �x� implies i�th�x� � x�i�

any tuple of cuts of this form is an example of fully disjoint tuple	
�� For every list y � ��� � � � � �n�� we call unary append �of order n�� and we
denote by appy�� function cons���� �� � � � cons��n�x� � � ���� if x is a list� it appends
its components to those of y	 For example� for y � A�B� and for every list
x � x�� � � � � xn�� we have appA�B��x� � A�B� x�� � � � � xn�	
De
ne list�x� � cons�x�NIL�x��� for all n de
ne list�xn��� � � � �x�� � cons�xn���
list�xn� � � � �x���	

For example� we have list��� � ��� list�A� A�� A��� � A� A�� A���	
�� De
ne the sentential connectives not� or� and from

not�x� � �x� F �T � T �� x or y � �x� T � y � T �T � F �	

A simple boolean function is built�up from eq� at and the connectives	 A boolean
function is obtained by substitution of some cuts to some variables in a simple
boolean function	
�� For all list of atoms q� s� t de
ne functions gq� s� t� by see proof of Lemma
� for their use� gq� s� t��x� � �apps�� q� t� cdr�� we have



gq� s� t��x�� � � � � xn�� u� w� y�� � � � � ym��� � s� x�� � � � � xn�� q� t� y�� � � � � ym���

�� A function is trivially decreasing if is a proper cut� or if it is in the form
�g�� � � � � gm�� and� a� every gi is a cut� or a unary app� and b� the sum of the
orders of all cuts is higher than the sum of the orders of all unary app�s	 For
example� �appT �� �d� id� is trivially decreasing	 If f � �g�� � � � � gm� is trivially
decreasing� and if no gi�y� is an atom� then jf �y�j � jyj	

� Recursion schemes

An obvious condition to ensure that a recursion scheme de
nes total functions
is that its recursive calls refer to values of the recursion variable� which preceed�
according to some partial� order� its current value	 In the Conclusion� doubts
are expressed about closure of the polynomial classes under recursion schemes
based on an order isomorphic to the natural numbers	 Hence our 
rst restriction
is to the order x � y i� jxj � jyj	

De�nition �� Given �� m parameters x� a principal variable y� and n auxiliary
variables s�
�� an n�ple d of trivially decreasing functions� together with a terminating
boolean function g��y�� depending on the form of the d�s in some trival way that
we don�t specify here�
�� an initial function g�x� y� and an invariant function h�x� y� s��
function f is de
ned by course�of�values recursion CVR� in g� h if we have

f �x� y�

�
g�x� y� if g��y� � T

h�x� y� f �x� d��y��� � � � � f �x� dn�y���� otherwise	

The following example shows that an exponential space complexity may eas�
ily be reached with very poor means� no nesting� and a single recursive call to the
most obvious sub�expression of the recursion variable	 Thus restrictions to the
invariant h have to be adopted	 We have two alternatives� either we drastically
impose that h be boolean� or we use the types machinery to rule its growth	

�
ex�x��� � cons�x�x�
ex�x� y� � cons�ex�x� y���� ex�x� y�����

De�nition �� �	 Function f is �recursively� boolean if is boolean and recursion�
free� or if is de
ned by CVR with boolean invariant function	

�	 Function f �x� y� is de
ned by short CVR SCV� if it is de
ned by CVR� if
the initial function g is in the class PL de
ned below� and if the invariant is
boolean	

�	 Function f is de
ned by or�SCV OR�CV� if it is de
ned by SCV� and the
form of its invariant is

h�x�y� s� � s� or s� or � � � or sn�



�	 Function f is de
ned by fast CVR FCV� if� is de
ned by SCV� the decreasing
functions form a fully disjoint tuple of cuts� and the invariant h is

a� either boolean� or

b� is recursion�free� and there is a function h�� in which � doesn�t occur�
and a tuple e of 	�s and 
�s� such that

h�x� y� s� � ��h��x� y� e��s��� � � � � en�sn����

The sense of clause b� above is that� if z�� � � � � zn are the previous values of f �
then h is not allowed to cons any zi with itself� though it may cons at most one
of the z�s in the scope of an 	 with at most one of those in the scope of a 
	

Examples of FCV	 De
ne the numeral numm� for m to be the list whose
m�� components are all �	 A function mult � such that mult �numh��numk�� �
numhk� may be obtained from function mult� below� by some trivial changes

mult��x� y� �

�
x if y is an atom
��unite�cons�x�	�mult��x� cdr�y

�������� otherwise�

Thus FCV� with cdr as decreasing function� may be regarded as an analogue
of number�theoretic PR	 Next example shows that� with car� cdr as decreasing
functions� FCV is the analogue of the form of recursion known in Literature as
tree PR	 In the concluding section the advantages of taking less trivial cuts as
decreasing functions are discussed	 The following function lh computes numjyj�

�
lh��� � ��
lh�y� � ��cons���unite�list�	�lh�y����
�lh�y���������

De
ne the equality by x � y �� eqc�cons�x� y��� where eqc is de
ned by FCV�
with d� � �car� car� and d� � �cdr� cdr�� by

eqc�y� �

�
eq�y�� y��� if at�y�� or at�y��� � T

eqc�d��y�� and eqc�d��y�� otherwise�

Example of OR�CV� SAT	 Assume de
ned function true�v� u� w� z��� which� if
v is a list of atoms and z is the code for� a sentential formula� a� assigns true
false� to the i�th literal of z if the i�th component of v is not� T � b� returns
T F � if z is true false� under this truth�assignment	 De
ne by OR�CV� with
decreasing tuples

d� � �appT �� cdr� cdr� id� d� � �appF �� cdr� cdr� id�

st�y� �

�
true�y� if at�y���
st�d��y�� or st�d��y�� otherwise�

Satis
ability is decided by sat�x� � list��� lh�x�� lh�x��x�	



Example of SCV � QBF	 We show that thepspace�complete language QBF is
accepted by a function qbf de
nable in PSL	 Let b� b�� � � � be �boolean� literals�
and let � � be quanti�ed boolean formulas	 Let num�i� be the binary numeral
for i� and de
ne the code � for  by

�� � T � �� � F � b�i � V AR� num�i��� 	�� � NOT� ��� 
b�� �
ALL� b�� ���

�b�� � EX� b�� ��� � � ��� � AND���� ���� �  ��� � OR���� ����

We associate each occurrence �b of literal b in formula  with a list AV �b� ��
to be used as address and truth�assignment� and de
ned by

�	 let  be �� or  � ���� if �b is in � is in �� then AV �b� � is L�AV �b� ���

is R�AV �b� ����� it says that �b is in the left right� principal sub�formula
of �

�	 if  is 
��bi�� and we wish to assign T� F to the occurrences of bi in the scope

of the indicated quanti
er� then AV �b� � � T�AV �b� ��� or� respectively�

F�AV �b� ���	

A function val�x� u� z�� can be de
ned in PL� which� by an input of the form

AV �b� �� u� �� returns T F � if AV �b� � is the address and truth�assignment
of an occurrence in  of a true false� literal	 De
ne

qb�y� �

����������
���������

val�y� if at�y����
�y��� � AND � qb�d���y�� and qb�d���y���
y��� � OR � qb�d���y�� or qb�d���y���
y��� � ALL � qb�d���y�� and qb�d���y���
y��� � EX � qb�d���y�� or qb�d���y���
y��� � NOT � not�qb�d��y����
y��� � V AR � qb�d��y��� otherwise�

function qb is de
ned by SCV� with the following trivially decreasing tuples
d�� � �appL�� �d� id� d�� � �appR�� �d� id�
d�� � �appT �� �d� id� d�� � �appF �� �d� id� d� � �id� �d� id�
We can now de
ne qbf �x� � qb�list���x�x��	

� Characterization

Given an operator O taking functions to functions� and a class C of functions�
we write OC�� for the class of all functions obtained by at most one application
of O to the elements of C� O�C� is the closure of C under O	 Thus� OC�� and
O�C�� are the closures of OC� and O�C� under substitution	
De�nition 	� De
ne

polytimef LispPL� also �p
�L� � FCV�B����

�
p
n��L � OR�SCV�p

n��L���
polynomial hierarchy LispPHL� � OR�SCV�PL��	
polyspacef lispPSL� � SCV�PL��	



Theorem
� All Lisp classes above are equivalent to the complexity classes their
names suggest�

Proof� We have polytimef� PL by lemma �	 By lemma �� all functions in
PL are limited by a polynomial� hence� by lemma �� PL �polytimef	 By
the same lemma� since the invariant in de
nitions by SCV is boolean� we have
PSL �pspacef	 We have pspacef� PSL� since� by the example above� the
pspace�complete set QBF can be decided in PSL� and since PL � PSL	 Lemma
�� shows the equivalence of the two hierarchies	

� Equivalence

Lemma�� � If f �x� y� is FCV in g and h� with recursion variable y� then there
is a constant m such that

jf �x� y�j � mjx� yj � jyj�
� Every function de�nable in PL is limited by a polynomial�

Proof� � Notations like under de
nition ���	 Assume that h is not boolean� and
de
ne M � maxlhcg�� lhch��	 Induction on jyj	 Base	 Immediately by lemma
� with s absent�	 Step	 Assume N �� jxj � �	 Let s �A denote the tuple of
expressions such that ej � 	 and s�Aj � ej �f �x� dj �y��� for some j� similarly for

s �B 	 By lemma �� since lhch� �M � we have

jf �x� y�j �MN � jyj� � maxs �A� � maxs �B�	

Since d is fully disjoint� there exist two sub�expressions u and w� such that
maxs �A� � jf �x�u�j� maxs �B� � jf �x�w�j and juj� jwj � jyj	 By the ind	 hyp	
we then have

jf �x� y�j �MN�jyj��MN�juj�juj�MN�jwj�jwj � mn�jyj���juj�jwj�	
� Induction on the construction of f 	 Step	 If f is de
ned by FCV� part � applies	
If f �x� is de
ned by SBST in g��x�u� of g��x� to u� by the ind	 hyp	 there are
k�� k�� such that gi is limited by �n�min

mi � mi� with mi � �ki � f is then
limited by �n�mnm�m� with m � �k�	k���
	 If f �y� � �g��y�� the result follows
immediately by the ind	 hyp	 applied to the g�s	

	�� Simulation of TM�s

Lemma� All functions computable in polynomial time are de�nable in PL�

Proof� We restrict ourselves to TM�s with a single semitape� that conclude their
operations by entering an endless loop	 Productions are in the form qiSj �
qijIij� i � s� j � t� where qi� qij are states� Sj is a tape symbol� and instruction
Iij is a new symbol or � fright�leftg	 We use the same notations for states
tape symbols� and for their codes� which are lists of s t� atoms	 Instantaneous



descriptions �i�d�� are coded by a list of the form l� q� o� r�� where� q and o are
the state and the observed symbol� the j�th component of list r list l� is the list
of t atoms coding the j�th symbol at the right left� of the observed symbol	 A
recursion�free function nextM can be de
ned that takes an i	d	 of a given TM
M into the next one	 Its form is
�eqlq����d�x��� �eqlS����d�x��� exec��� � � � � eqlSt���d�x��� exec�t�x���
� � ��
�eqlqs���d�x��� �eqlS����d�x��� execs�� � � � � eqlSt���d�x��� execst�x����
where� for all lists of atoms p� predicate eqlp��x� is true i� x � p� and where
execij is the function that executes instruction Iij 	 For example� if qij is q� and
Iij is right� then execij is

�eqlS���car��th�x��� exij��x�� � � � � eqlSt��car��th�x��� exijt�x���
where exijk is obtained from functions gqi� Sj � Sk� in �	���� by replacing in
order to add a blank symbol BL when M moves right to visit for the 
rst time
a new cell� the indicated cdr by

�eq�NIL� cdr�u��� BL��T � cdr�u��	
Let a TMM be given� together with an input coded by� x� and with a polynomial
bound of the form �n�h � n�k	 From functions mult and lh of Section �� a
function phk can be de
ned which takes x into numh� jxj�k�� a function start
can be de
ned� which takes x into the initial i	d	 x� q�� BL� BL��� where BL
is the code for M �s blank symbol	 The following function sM � by input x and
y � numh�� simulates the behaviour of M for h steps�

sM �x��� � x

sM �x� y� � nextM �sM �x� y�����

the required simulation is performed by simM �x� � sM �start�x�� phk �x��	

	�� Simulation of CVR by TM�s

Lemma�� If f is de�ned by CVR �FCV� and is limited by a polynomial� if its
initial function is in polytimef� then f is in polyspacef �polytimef��

Proof� Outline of the simulation� Let f be de
ned by CVR with notations of
De
nition �	 Let g� g�� h�d be simulated by the TM�s G�G�� H�Di	 Assume that
f is limited by a polynomial p	 A TM F simulating f can be de
ned� which
behaves in the following way	

Let � be a n�ary tree of height � jyj� whose root is labelled by� y� and
such that� every internal node z has n children d��z�� � � � � dn�z�� and every leaf
satis
es the terminating condition decided by G�	 F visits � in the mode known
as post�order	 It records in a stack �� the sequence of recursive calls� and it
stores in a second stack �� the values f �x� dj �z�� which are needed to compute
h�x� z� f �x� d��z��� � � � � f �x� dn�z���	
Space complexity� In addition to space used by G and H � F needs space for the
stacks� the amount for�� is linear in jyj� since we have to store� jyj objects� each
� n	 When in �� there are r numbers jq � in �� there are

Pr
q��n � jq� � njyj

values of f � thus space for j��j is linear in pjx� yj� � jyj	



Time complexity	 Let f be de
ned by FCV in g� h	 Since d is fully disjoint� the
tree � has � jyj nodes� and� therefore� G�H are applied less than jyj times	 The
result follows� since their input is bounded above by p	

	�� Equivalence of PH and PHL

Lemma��� For all n we have �p
n � �p

nL�

Proof� �Outline� �	 Induction on n	 Step	 Let language L � �p
n over al�

phabet � � fS�� � � � � Sqg be given	 Let atom �i code Si� and let word w �
Si	�
� � � � � Si	n
 � � � be coded by the list of atoms X � �i	�
� � � � � �i	n
�	 Let
g�x�u� � �p

nL be the characteristic function of L� which is granted by the ind	
hyp	 We show that the characteristic function f of

L� � fX�� � � � � Xm� Y � � �UjU j � jY j � X�� � � � � Xm� U� � L�g
is in �

p
n��L	 With decreasing tuples �app�i�� cdr� cdr�� de
ne by OR�SCV

f��x� y� �

�
g�x� y� if at��d�y��
f��x� d��y�� or � � � or f��x� dq �y�� otherwise�

Language L� is accepted by f �x� y� � f��x� �� y� y�	
�	 Induction on n and on the construction of function f � PHL to be simulated	
Assume that f �x� y� is de
ned by OR�SCV in g � �p

nL and h� with decreasing
functions dj since else the result is an immediate consequence of the induction on
f or of the fact that ptimef� �

p
�L�	 Let g decide language L	 A nondeterministic

TM Mf with oracle L can be de
ned� which� �� at each call to h� iterates an
invariant cycle� including� at each or of h� the choice of a j and the simulation
of dj � �� at each g� queries the oracle	 The time complexity of Mf is quadratic
� jyj applications of the TM�s simulating functions dj�	

� Conclusions

Normal form From proof of Lemma � from the example on QBF�� we see that
only one level of nesting of FCV SCV� is actually needed to compute polytimef
polyspacef�	 This may be used to give an analogue for these classes of Kleene�s
normal form theorem for PR functions	

Classes dtimefnk�	 The fact above implies that to characterize these classes we
have to rule the number and quality of the SBST�s	 For example� let PL� be the
Lisp class which is obtained from FCVB��� by excluding substitutions of the
arguments of a recursive function by other recursive functions� and let PL� be the
further retriction of PL� to recusively boolean functions� it can be proved that
PL� �dtimefn��� that PL� �dtimen��� and that if f is recursively boolean
in functions in dtimef�nk�� then it is in dtimenk���	 A classi
cation of all
classes dtimespacefnk � nm� can be easily obtained by following this approach	



Validation By scanning ���� x����� we see that all algorithms for the 
rst G�odel
theorem and for predicate T a universal function� are written in a language
quite close to our PL besides notations� we have just to replace all bounded
quanti
ers by a program for search of sub�expressions�	 This is not surprising�
since Kleene�s arithmetization methods are based on his generalized arithmetic
���� x��� which� in turn� may be regarded as a form of primitive recursive Lisp	
This might point out a certain adequacy of our dialects of Lisp to represent
algorithms	 It might then be sensible to show the time�space complexity of an
algorithm by just describing it in the language of PL� and then checking to
which element of the classi
cation above does it belong	

Improvements to the language Types are only an apparent burden for concrete
use of PL� since we may forget them� and just watch that the previous values of
the function under de
nition by FCV be not cons�ed together by the invariant�
if not boolean	 A more serious obstacle is that we are free to nest any number
of boolean FCV�s above at most one not�boolean FCV	 We plan to remove this
limitation by means of a re�de
nition of the types	

A point dividing these authors We have de
ned only the ��subclasses of PH� and
not the ��s and � �s� like NP� co�NP� etc	 Some among us believe that class OR�
SCVPL� characterizes NP� while others maintain that it is too large	 To discuss
this point� let us say that language L is accepted by f when we have x � L i�
f �x� � T 	 Indeed SAT is accepted by function not�sat�x��� and this function is
in OR�SCVPL��� and not in OR�SCVPL�� since is de
ned by substitution of
sat�x� in function not�x�	 Thus� from a strictly syntactic point�of�view� we might
pretend that classes OR�SCV�p

kL� are characterizations of �p
k��� and de
ne

�
p
kL to be the class of all functions of the form not�f �x��� f � �

p
kL	 But perhaps

we should look at more substantial facts than mere syntax� it is undeniable that�
so to say� sat knows SAT � thus one is entitled to say that OR�SCVPL� is not
well�de
ned with respect to resources� and is not an acceptable characterization
of NP	

Stronger forms of recursion� Let �S be a total order of the S�expressions	 Let
us say that f is de
ned by n�strong CVR if f �y� depends on n values f �yi�� such
that� for all i� we have yi �S y	 It can be easily proved that polyspacef is
closed under ��strong CVR	 Apparently ����� it can be proved that polytimef
is not closed under ��strong CVR� and that if polyspacef is closed under ��
strong CVR� then polyspace � exptime	 The proof of this result fails when
relativized to oracle�TM�s	
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