2 research outputs found

    cost estimation method for gas turbine in conceptual design phase

    Get PDF
    Abstract Introduction of new gas turbine machines on market is a complex project that requires optimization of different performance parameters such as power, efficiency, maintenance plan, product cost and life. The ability to control cost and impact on performances and life strongly decreases from conceptual to detailed design phase. Actually, 80 % of product's cost and performances are committed based on decisions made in conceptual design. This Paper describes a systematic procedure to estimate the cost of multiple design alternatives during conceptual design phase, comparing different cross sections for gas turbine solutions. Examples of parametric costing tool for part family will be described, to show the approach that allows to estimate costs in conceptual design phase, when detailed design has not been developed and lack of information is a daily topic. The idea is to be able to read design information of each part from an enhanced cross section and enter parametric costing tool to have a preliminary cost estimation in conceptual phase. Doing that for each part or module present, it will be possible to estimate total cost of the product. The scope is to create an internal database where the whole know-how and best practices are stored. This database can be examined in early program stages, to reduce time to market and avoid pursuing solutions that would not be viable or convenient, in a sort of digital twin approach. Another positive aspect pursued and presented, is the positive impact on engineering productivity, that directly reflects on program development cost
    corecore