16 research outputs found

    Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs.

    Get PDF
    Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5\u27 and/or 3\u27 ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5\u27 miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery

    The telomere world and aging: Analytical challenges and future perspectives

    No full text
    Telomeres, the terminal nucleoprotein structures of eukaryotic chromosomes, play pleiotropic functions in cellular and organismal aging. Telomere length (TL) varies throughout life due to the influence of genetic factors and to a complex balancing between “shortening” and “elongation” signals. Telomerase, the only enzyme that can elongate a telomeric DNA chain, and telomeric repeat-containing RNA (TERRA), a long non-coding RNA involved in looping maintenance, play key roles in TL during life. Despite recent advances in the knowledge of TL, TERRA and telomerase activity (TA) biology and their measurement techniques, the experimental and theoretical issues involved raise a number of problems that should carefully be considered by researchers approaching the “telomere world”. The increasing use of such parameters – hailed as promising clinically relevant biomarkers – has failed to be paralleled by the development of automated and standardized measurement technology. Consequently, associating given TL values to specific pathological conditions involves on the one hand technological issues and on the other clinical-biological issues related to the planning of clinically relevant association studies. Addressing these issues would help avoid major biases in association studies involving TL and a number of outcomes, especially those focusing on psychological and bio-behavioral variables. The main challenge in telomere research is the development of accurate and reliable measurement methods to achieve simple and sensitive TL, TERRA, and TA detection. The discovery of the localization of telomeres and TERRA in cellular and extracellular compartments had added an additional layer of complexity to the measurement of these age-related biomarkers. Since combined analysis of TL, TERRA and TA may well provide more exhaustive clinical information than a single parameter, we feel it is important for researchers in the various fields to become familiar with their most common measurement techniques and to be aware of the respective merits and drawbacks of these approache

    Intracallosal neuronal nitric oxide synthase neurons colocalize with neurokinin 1 substance P receptor in the rat

    No full text
    The corpus callosum (cc) contains nitric oxide (NO)-producing neurons. Because NO is a potent vasodilator, these neurons could translate neuronal signals into vascular responses that can be detected by functional brain imaging. Substance P (SP), one of the most widely expressed peptides in the CNS, also produces vasomotor responses by inducing calcium release from intracellular stores through its preferred neurokinin 1 (NK1) receptor, thus inducing NO production via activation of neuronal NO synthase (nNOS). Single- and double-labeling experiments were performed to establish whether NK1-immunopositive neurons (NK1IP -n) are found in the rat cc and the extent of NK1 colocalization with nNOS. NK1IP -n were seen to constitute a large neuronal population in the cc and had a distribution similar to that of nNOSIP neurons (nNOSIP -n). NK1IP -n were numerous in the lateral cc and gradually decreased in the more medial portions, where they were few or absent. Intracallosal NK1IP -n and their dendritic trees were intensely labeled, allowing classification into four morphological types: bipolar, round, polygonal, and pyramidal. Confocal microscopic examination demonstrated that nearly all NK1IP -n contained nNOS (96.43%) and that 84.59% of nNOSIP -n co-expressed NK1. These data suggest that the majority of intracallosal neurons can release NO as a result of the action of SP. A small proportion of nNOSIP -n does not contain NK1 and is not activated by SP; these neurons may release NO via alternative mechanisms. The possible mechanisms by which intracallosal neurons release NO are also reviewed

    Modulation of soluble receptor for advanced glycation end-products (RAGE) isoforms and their ligands in healthy aging

    No full text
    The receptor for advanced glycation end-products (RAGE) recognizes several ligands involved in inflammatory diseases. Two circulating soluble isoforms exist: esRAGE derived from alternative splicing and cRAGE generated by the membrane-bound RAGE (FL-RAGE) proteolysis. Together, esRAGE and cRAGE constitute sRAGE and function as decoy receptors preventing FL-RAGE/ligands binding.We determined serum concentration of both, esRAGE and cRAGE, and their ligands AGEs, HMGB1 and S100A8/A9 in a healthy population of 169 subjects aged 20-90 years. cRAGE showed a negative (r=-0.375, P<0.0001) while AGEs (r=0.160, P=0.0384) and S100A8/A9 (r=0.207, P=0.0091) a positive correlation with age. esRAGE did not change during aging and inversely correlated with Hemoglobin, ALT, insulin, HOMA index, Waist-Hip ratio (W/H), Waist Circumference (WC) and positively with AGEs. cRAGE exhibited also an inverse correlation with WC, W/H, PAI-1, HMGB1, AGEs and S100A8/A9. Age, W/H, HMGB1, S100A8/A9 and AGEs are independent predictors of cRAGE, whereas W/H and AGEs associate with esRAGE. Treatment of cells with glycated albumin reduced cRAGE production and upregulated FL-RAGE.These results indicate that in a healthy population cRAGE is a biomarker of aging while esRAGE represents a more reliable marker of obesity and insulin resistance. Hence, sRAGE isoforms levels could be differentially associated with age-related diseases risk factors

    Genome-Wide Methylation Changes Associated with Replicative Senescence and Differentiation in Endothelial and Bone Marrow Mesenchymal Stromal Cells

    No full text
    Bone marrow mesenchymal stromal cells (BMSCs) are multipotent cells able to self-renew and differentiate, depending on the microenvironment, into adipocytes and osteoblasts. These cells have a limited number of replications and enter replicative senescence during in vitro expansion. The role of DNA methylation (DNAm) assumes importance in cell function and commitment; however, its exact contribution to BMSC differentiation and replicative senescence is still unclear. We performed a genome-wide DNAm analysis on BMSCs cultured in vitro at early passages and induced to differentiate into adipocytes and osteoblasts, and on replicative senescent BMSCs and HUVECs, to identify DNAm patterns of senescence and differentiation. We also compared BMSCs and HUVECs in replicative senescence and found that, in both cellular systems, genome-wide hypomethylation was accompanied by a higher-than-expected overlap of differentially methylated positions (DMPs) and concordance in terms of direction of the change. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis on lineage-independent senescence-associated DMPs revealed 16 common pathways, including Insulin resistance, Molecule adhesion, and Wnt/β-catenin signaling. In both adipogenesis and osteogenesis, we observed a general demethylation of CpG sites compared with undifferentiated BMSCs with a higher number of DMPs in osteogenesis. KEGG analysis resulted in 30 pathways enriched in osteoblasts and only 2 in adipocytes when compared to undifferentiated cells. When comparing differentiated BMSCs with senescent ones, osteogenesis exhibited a greater overlap with senescence in terms of number of DMPs and direction of methylation change compared to adipogenesis. In conclusion, this study may be useful for future research on general mechanisms that occur in replicative senescence and furthermore to identify trajectories of BMSC differentiation and common aspects of differentiated and senescent cells

    Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs

    No full text
    Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5\u2032 and/or 3\u2032 ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5\u2032 miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery

    Physical Activity Modulates the Overexpression of the Inflammatory miR-146a-5p in Obese Patients

    No full text
    Specific microRNAs (miRs), including the “angio-miR-126” and the “inflamma-miR-146a-5p,” have been proposed as biomarkers and even therapeutic targets of obesity-associated metabolic diseases. Physical activity, a key measure of prevention for obesity and its complications, is reported to influence the expression of these miRs. In this study, we investigate whether a physical activity program proven to improve metabolic parameters in obese patients can correct the circulating levels of these miRs. Plasma miR-126 and miR-146a-5p were measured in a cohort of obese patients (n = 31, 16F + 15M) before and after the 3-month physical activity program of the CURIAMO trial (registration number for clinical trials: ACTRN12611000255987) and in 37 lean controls (24F + 13M). miR146a-5p, but not miR-126, was significantly increased in obese patients as compared with lean controls and decreased in approximately two-thirds of the participants post-intervention with a response that positively correlated with pre-intervention levels of this miR. Waist circumference, the inflammatory cytokine IL-8 and lipid parameters, principally total cholesterol, showed the strongest correlation with both the baseline levels and postintervention correction of miR-146a-5p. Post-hoc analysis of experimental data supports the use of miR-146a-5p as a biomarker and predictor of the clinical response to physical activity in obese patients. Furthermore, miR146a-5p expression was confirmed to increase together with that of the inflammatory genes TLR4, NF-κB, IL-6, and TNF-α in LPS-stimulated human mononuclear leukocytes. In conclusion, the inflamma-miR-146a-5p can serve as a personalized predictor of clinical outcome in obese patients entering physical activity weight-reduction programs

    Long-term exposure of human endothelial cells to metformin modulates miRNAs and isomiRs

    No full text
    Increasing evidence suggest that the glucose-lowering drug metformin exerts a valuable anti-senescence role. The ability of metformin to affect the biogenesis of selected microRNAs (miRNAs) was recently suggested. MicroRNA isoforms (isomiRs) are distinct variations of miRNA sequences, harboring addition or deletion of one or more nucleotides at the 5' and/or 3' ends of the canonical miRNA sequence. We performed a comprehensive analysis of miRNA and isomiR profile in human endothelial cells undergoing replicative senescence in presence of metformin. Metformin treatment was associated with the differential expression of 27 miRNAs (including miR-100-5p, -125b-5p, -654-3p, -217 and -216a-3p/5p). IsomiR analysis revealed that almost 40% of the total miRNA pool was composed by non-canonical sequences. Metformin significantly affects the relative abundance of 133 isomiRs, including the non-canonical forms of the aforementioned miRNAs. Pathway enrichment analysis suggested that pathways associated with proliferation and nutrient sensing are modulated by metformin-regulated miRNAs and that some of the regulated isomiRs (e.g. the 5' miR-217 isomiR) are endowed with alternative seed sequences and share less than half of the predicted targets with the canonical form. Our results show that metformin reshapes the senescence-associated miRNA/isomiR patterns of endothelial cells, thus expanding our insight into the cell senescence molecular machinery

    Replicative Senescence-Associated LINE1 Methylation and LINE1-Alu Expression Levels in Human Endothelial Cells

    No full text
    One of the main challenges of current research on aging is to identify the complex epigenetic mechanisms involved in the acquisition of the cellular senescent phenotype. Despite some evidence suggested that epigenetic changes of DNA repetitive elements, including transposable elements (TE) sequences, are associated with replicative senescence of fibroblasts, data on different types of cells are scarce. We previously analysed genome-wide DNA methylation of young and replicative senescent human endothelial cells (HUVECs), highlighting increased levels of demethylated sequences in senescent cells. Here, we aligned the most significantly demethylated single CpG sites to the reference genome and annotated their localization inside TE sequences and found a significant hypomethylation of sequences belonging to the Long-Interspersed Element-1 (LINE-1 or L1) subfamilies L1M, L1P, and L1HS. To verify the hypothesis that L1 demethylation could be associated with increased transcription/activation of L1s and/or Alu elements (non-autonomous retroelements that usually depend on L1 sequences for reverse transcription and retrotransposition), we quantified the RNA expression levels of both L1 (generic L1 elements or site-specific L1PA2 on chromosome 14) and Alu elements in young and senescent HUVECs and human dermal fibroblasts (NHDFs). The RNA expression of Alu and L1 sequences was significantly increased in both senescent HUVECs and NHDFs, whereas the RNA transcript of L1PA2 on chromosome 14 was not significantly modulated in senescent cells. Moreover, we found an increased amount of TE DNA copies in the cytoplasm of senescent HUVECs and NHDFs. Our results support the hypothesis that TE, which are significantly increased in senescent cells, could be retrotranscribed to DNA sequences
    corecore