3 research outputs found

    Thermal Transformations of Self-Assembled Gold Glyconanoparticles Probed by Combined Nanocalorimetry and X‑ray Nanobeam Scattering

    No full text
    Noble metal nanoparticles with ligand shells are of interest for applications in catalysis, thermo-plasmonics, and others, involving heating processes. To gain insight into the structure-formation processes in such systems, self-assembly of carbohydrate-functionalized gold nanoparticles during precipitation from solution and during further heating to ca. 340 °C was explored by in situ combination of nanobeam SAXS/WAXS and nanocalorimetry. Upon precipitation from solution, X-ray scattering reveals the appearance of small 2D domains of close-packed nanoparticles. During heating, increasing interpenetration of the nanoparticle soft shells in the domains is observed up to ca. 81 °C, followed by cluster formation at ca. 125 °C, which transform into crystalline gold nuclei at around 160 °C. Above ca. 200 °C, one observes the onset of coalescence and grain growth resulting in gold crystallites of average size of about 100 nm. The observed microstructural changes are in agreement with the in situ heat capacity measurements with nanocalorimetry

    Submicrometer 3D Structural Evidence of Fuel Cell Membrane Heterogeneous Degradation

    No full text
    Polymer membranes used in the proton exchange membrane fuel cell (PEMFC) technology are subject to severe chemical and physical degradations during operation. A microscopic diagnosis of the effects of aging on the microstructure of benchmark perfluorinated sulfonic acid (PFSA) membranes is crucial to developing long-lasting devices. We report here the first μSAXS study of membranes aged for 2500 h in a stack. SAXS spectra recorded with submicrometer resolution in-plane and along the membrane thickness provide a 3D mapping of the aging effect. Nanoscale heterogeneities are evidenced and found to depend on the membrane position relative to the electrodes, to the air inlets, and proximity to channels (distributing gas) or ribs (collecting the current). Long-term aging in a fuel cell operating in stationary conditions around 65 °C results in a small voltage degradation rate of 13 μV/h, without any evidence of membrane failure, but to an irreversible over-swelling of the membrane due to polymer relaxation. Regions under the gas distribution channels close to the air inlet are profoundly degraded due to an increased water gradient concentration from the cathode to the anode. These observations provide a novel and unique insight for developing new strategies toward the design of more durable polymers inserted in smart fuel cells

    Evidence of Cybotactic Order in the Nematic Phase of a Main-Chain Liquid Crystal Polymer with Bent-Core Repeat Unit

    No full text
    We report the synthesis and structural characterization of a main-chain liquid crystal polymer constituted by a 1,2,4-oxadiazole-based bent-core repeat unit. For the first time, a liquid crystal polymer made of bent mesogenic units is demonstrated to exhibit cybotactic order in the nematic phase. Coupled with the chain-bond constraints, cybotaxis results in maximized molecular correlations that make this material of great potential in the search for the elusive biaxial and ferroelectric nematic phases. Indeed, repolarization current measurements in the nematic phase hint at a ferroelectric-like switching response (upon application of an electric field of only 1.0 V μm<sup>–1</sup>) that, albeit to be definitely confirmed by complementary techniques, is strongly supported by the comparative repolarization current measurements in the nematic and isotropic phases. Finally, the weak tendency of this polymer to crystallize makes it possible to supercool the cybotactic nematic phase down to room temperature, thus, paving the way for a glassy phase in which the biaxial (and possibly polar) order is frozen at room temperature
    corecore